データ・アナリティクス入門

データで読み解く新たな発見の旅

代表値の意義は何? 平均値や中央値は、データを簡潔に理解するための「代表値」として便利です。これらはデータ全体をおおまかに把握するために使用されます。しかし、平均値はデータのばらつきや偏りを考慮しないため、標準偏差などの指標を使ってそのデータの分散を理解することも重要です。ヒストグラムはデータのばらつきをしっかり理解するのに役立ちますし、円グラフは構成要素が占める割合を視覚的に捉えるのに有効です。特に、データに際立ったばらつきがある場合は、その点に焦点を当てて分析することで問題を深堀りしやすくなります。 計算方法の違いは? 代表値の計算方法には、単純平均や加重平均、幾何平均、中央値など様々な種類があります。単純平均は全データの合計を個数で割ったもの、加重平均は各数値に重みを付けて算出するもの、幾何平均は冪根を使って計算します。特に平均値が極端な外れ値の影響を受けやすい場合には、中央値を使用するのが適しています。 標準偏差の役割は何? また、データの散らばりを理解するために標準偏差も重要な指標です。標準偏差は、データの各値との差の二乗の平均として計算され、データのばらつきを数値で示します。さらに、標準偏差の68%ルールや95%ルールは、データの大部分がどの範囲に収まるかを示し、これも理解を助けます。 業務整理にどう活かす? このような統計手法は、顧客の業務を整理する際に役立ちます。例えば、どの業務パターンを外れ値として除外すべきか、それがなぜ合理的なのかを論理的に説明できれば、業務要件をシンプルにするのに貢献します。加重平均を使用して、一部のケースでのみ発生する業務パターンを無視しても影響が小さいことを示したり、幾何平均で業務量の年次増加率を算出し、将来のシステム投資を提案することもできます。このようなシナリオが他にもないか、引き続き検討していきたいと思います。

クリティカルシンキング入門

数字が描く未来への地図

グラフ表現はどう見る? データをグラフ化したり、分解や階層化、刻み幅の調整を行うことで、視覚的な効果が明確に表れた点に感動しました。また、属別、変数、プロセスといったMECEの考え方を採用していることは、新たな発見でした。特に、既存顧客と新規顧客のデータ加工により、今後の事業展開におけるプレゼンテーションやデータ分析の資料作成に大いに役立つと感じました。 来店分析の視点は? まず、既存の来店顧客の分析では、居住地、年代、性別という視点から顧客の特徴を可視化しました。これにより、提供すべき利便性や専門性、さらには信頼性を把握でき、商圏のマップ作成や年齢別構成比、性別比率の分析が実施されました。 来店理由をどう評価? 次に、来店理由の分析では、ネット、看板、紹介、口コミといった複数の集客チャネルを評価し、来店時の相談内容も踏まえたことで、各チャネルの有効性や口コミ・紹介によるリピート率の傾向を明らかにしました。 社員満足度の内訳は? また、社員満足度の調査では、匿名のアンケート手法を用い、年代別のモチベーションや福利厚生に対する満足度、職種別の残業比率などを数値化することで、従業員の状況を詳細に把握し、今後の改善につなげる分析が行われました。 在庫管理の効率化は? さらに、薬品や備品の在庫管理においては、在庫回転率のデータ利用や重複作業の削減を通じて、作業の効率化が図られました。 診療アップセルはどう? 加えて、自由診療と保険診療の両面からアップセルの可能性を探る資料も作成され、今後の収益向上の取り組みに寄与する内容となっています。 新規事業展開は何が? 最後に、新規事業開拓に際しては、M&Aや他業種とのシナジー効果の検討を踏まえた資料作成が進められており、全体として包括的なビジネス展開の土台作りに大いに役立つと感じました。

戦略思考入門

分析力で変える外食業界

どのフレームワークが響く? さまざまなフレームワークを学び、サンライズ社の事例を通して分析手法の重要性を実感しました。3人の主任が示した意見から、企業内部の視点だけでは戦略が偏る可能性があることを理解し、3C分析とSWOT分析が市場や競合、自社の現状を客観的に捉えるために有効であると感じました。 価値はどこで生まれる? また、バリューチェーン分析を通じて、自社がどの部分で価値を生み出しているかを明確にすることが、効率的な改善や新たな価値創造につながる点も印象に残りました。これらの分析手法は、複雑な問題を整理し戦略の方向性を決定する上で非常に役立つと実感しており、今後のビジネスシーンで積極的に活用していきたいです。 外食業態の示唆は? 今回の学びは、私が運営する外食業態にも多くの示唆を与えています。まず、3C分析は顧客のニーズ変化、競合の動向、自社の強みと弱みを把握するために欠かせません。顧客分析では、個食や中食の需要増加、SNS映えを重視する層の登場を踏まえ、競合分析では近隣の店舗や他業態の動向にも目を向ける必要があります。 自社の見直しは? 自社分析においては、料理の質、サービス、店舗の雰囲気、価格設定などを客観的に評価し、強みを伸ばし弱みを改善する戦略が求められます。加えて、SWOT分析やクロスSWOT分析を活用することで、自社の強み、弱み、機会、脅威を整理し、積極攻勢、差別化、集中、多角化といった戦略的方向性を明確にできると考えています。 成長戦略はどう? このような分析フレームワークを用いることで、変化の激しい外食業界でもデータに基づいた客観的な意思決定が可能となり、持続的な成長を実現する戦略を立てることができると確信しています。今回の学びを活用しながら、自分自身やチームの能力を高め、変化に適応できる組織作りに努めていきたいと思います。

データ・アナリティクス入門

データ分析でビジネスの謎を解く方法

売上判断で何を比較すべきか? 売上の良し悪しを判断するとき、「大きい」「小さい」「高い」「低い」などの表現を用いる場合、必ず何と比較しているかを示すことが重要です。この比較によりデータの加工を行うと、さらに新たな視点が見えてきます。 代表値とデータ分布をどう見る? まず、データの特徴を一つの数字に集約して捉えます。代表値や平均値を見るとき、その数字だけで判断せず、データの分布も合わせて考慮する必要があります。 データ視覚化の重要性は? 次に、データを視覚的に捉えることが重要です。データをグラフ化、ビジュアル化することで、データ間の関係性を視覚的に捕えることができ、特徴の把握や解釈、仮説立案が容易になります。目的に応じて適切なグラフ(円グラフやヒストグラムなど)を選ぶことで、比較・分析がしやすくなります。 数式で関係性を捉える方法は? さらに、数式を用いて関係性を捉える方法もあります。代表値として単純平均、加重平均、幾何平均、中央値、そして散らばりを示す標準偏差を利用します。単純平均だけでなく、他の代表値もしっかりと使いこなすことが求められます。 仮説検討で何を探る? これらの手法を用いて数字を算出し、比較することから仮説を立て、傾向や問題点を見つけるには、個人の経験や知識、世間の動向やトレンドを把握することが重要です。月次報告書にこれらの比較方法を取り入れ、仮説の立案までをセットにし、分析報告をまとめることが目標です。 来週火曜日の報告までにすべきことは? 来週火曜日に役員へ報告する資料が必要です。この資料は、単に実績を表としてまとめるだけでなく、そこから読み取れる傾向も分析し、上司に報告する内容にしたいと考えています。仮説については、実際の現場の責任者とも会話し、その仮説にどれほどの差異があるかを検証し、次回以降の仮説検討の際に参考にしていきます。

戦略思考入門

柔軟思考で読む経営の真髄

目標は何になる? まず、以下の3点を目標にする必要があります。第一に、物事の本質を捉え、目標達成に効果的な手段をシステマチックに考えること。次に、大局観を持ってバランスよく情報を収集・分析し、適切に考察すること。そして、フレームワークなどの型を習得することです。 どう分析する? 分析にあたっては、3C、SWOT、クロスSWOT、バリューチェーンなど、案件に応じた手法を選ぶと同時に、特定のフレームワークに固執しすぎない柔軟さも求められます。また、常に経営者の視点を持ち、ジレンマを恐れずに他社の意見に耳を傾ける姿勢が重要です。 どう機能を活かす? 製品開発においては、自分の担当機能に偏りがちな傾向を意識する必要があります。たとえば、機能テストではテスト内容に気を取られがちですが、本当に提供したい機能で何が求められているのかを見極めることが大切です。また、他機能との干渉が発生した場合、自己の機能を守るだけでなく、相手とのより良い落としどころを探ることが求められます。自分の機能のメリットを強調する際も、全体最適の視点で何が必要とされているのかを考えることが重要です。さらに、自グループの改善・発展のみに目を向けるのではなく、経営者の視点でそのグループに求められる役割を見定めること、そして、現状の取り組みに意義を見出せなくなったときには、チーム、会社、グループ、業界全体の視点で再評価することが求められます。 役割を再考すか? また、現在、関連企業に出向している中で、業務委託先という意識から自らの存在意義を否定的に捉えるメンバーが多い現状があります。そのため、会社単体で考えるのではなく、グループ全体や業界全体、さらには世界規模の視野で自分たちの役割がどのような影響を及ぼし、結果的に何を求められているのかについて、定期的にメンバーで話し合う機会を設けることが重要だと考えています。

クリティカルシンキング入門

切り口で明かす学びの本質

データはどう見切る? データの切り方によって、同じ数字でも見える課題や傾向が大きく変わることを実感しました。目的を明確にして「何を見たいのか」を意識した切り分けを行うことで、漠然と眺めるだけでは気づけなかった本質が浮かび上がり、無駄を省いた的確な分析が可能になると感じています。 MECE活用は有効? また、MECEの考え方を取り入れて整理することで、重複や見落としを防ぎ、全体像を正確に把握できるようになりました。その結果、何が起こっているのか、どこに手を打つべきかを論理的に説明でき、相手にも納得してもらいやすくなると学びました。 支援でどう効果発現? たとえば、新規事業の構想支援では、顧客層、提供価値、チャネル、収益構造などの視点で情報を整理することで、情報の抜けや重複を防ぎ、相手の納得感を得て意思決定をスムーズにする効果を実感しました。 組織開発の整理法は? また、組織開発の現場では、ヒアリングした内容を「構造」「風土」「スキル」「制度」といった切り口で整理することにより、課題の全体像や優先順位が明確になり、具体的な施策立案につながっています。 研修・講演はどう整理? さらに、研修や講演の場面でも、参加者にとって複雑なテーマを目的に沿って段階的に分解して提示することで、理解と納得を引き出す効果がありました。オンラインでのクライアントとの対話やレビューの際にも、現在の視点や抜け漏れ、そして本質を可視化することで、共通理解と納得感のある議論が進められると感じています。 学びを今後どう活かす? 今回学んだ「切り口の工夫」や「MECEの視点」は、事業開発や組織開発の現場で、初期の仮説立てからヒアリング結果の整理まで非常に役立つと実感しています。今後はこれらの手法を意識的に活用し、ツールを組み合わせながら日常業務に継続的に取り入れていきたいと思います。

データ・アナリティクス入門

一歩踏み出す再学習の軌跡

全体像を再確認? これまでの学習内容を振り返る中で、全体像を再確認できたと感じています。毎週の講義では、個々の演習を通じて内容を確認する機会がありましたが、連続性が不足していたため、先週と今週の学習でその点が整理された印象を受けました。また、従来のやり方や考え方にとらわれがちであることを学びの中で指摘され、再度学び直す必要性を実感しました。 特許情報の活用は? 環境分析においては、特許情報と非特許情報を組み合わせた手法のニーズが高まっていることから、今回の学習で得た知識や手法を取り入れていきたいと考えています。特に、分析は比較が前提であることや、「目的」の重要性について、チーム内での認識が揺らがないよう常に確認する点、そして仮説志向で同じパターンに偏りがないか、使用するデータが適切かを検証すること、さらにWhat-Where-When-Howの観点から確認と検証を行うことが必要です。 データ分析の課題は? これまでの業務を振り返ると、部署や立場が異なるチームでデータ分析に基づく活動を進める際、結果を重視した分析や、データから無理に仮説を導いたり、エイヤーで問題設定を行ったりしていたことに気付きました。今後は今回学習した流れをもとに、自らの手でハンドリングできるよう、実践の機会を積み重ねたいと思います。 問題解決の手順は? また、データ分析に限らず「問題解決のSTEP」を意識して業務に取り組むようになりました。分析を進める過程で、常に「目的」の認識に相違がないか確認し、スケールの大きい要求に対しては漠然とした要求を細分化し、より適切なデータ分析とアウトプットが実現できるよう努めたいと考えています。まずは、自分が担当するチームの開発テーマや製品の規模に合わせたデータ分析を実施し、その結果を第三者であるチームに説明することで、考え方や手順の定着を図っていきたいです。

アカウンティング入門

数字の裏側に迫る経営革新の道

数字の背景を見た? 今週の学習で特に印象に残ったのは、財務数値の見方が「数字そのもの」ではなく、その背景や因果関係に着目することの重要性です。P/Lについては、売上や利益額だけでなく、利益率やコスト構造を確認することで、どこで利益が発生し、どこに改善の余地があるのかを探る視点を学びました。一方、B/Sでは、負債と資本という資金調達方法と、資産としての活用先を対比することで、資金繰りや経営の安定性を判断する手法を理解しました。さらに、P/LとB/Sを関連づけて分析することで、企業の全体像を立体的に把握できる点も大変有意義でした。今後は、こうした視点を業務改善に活かし、改善策が利益率や資金繰りにどのような影響を与えるかを明確に示せるよう努めたいと考えています。 活かす場面は何? ① 活用したい場面 請求・入金フローの改善やコスト削減の提案の際に、学んだ視点を活用したいと考えています。たとえば、請求処理の誤り削減や入金遅延の改善に取り組む際、P/Lの視点では改善による利益率向上、B/Sの視点では資金繰りや運転資本の改善効果を具体的な数値で示すことが可能です。 提案は伝わる? ② 学びを活用している姿 実際に改善案を経営層や関係部署に提示する際には、売上総利益率や回収サイトの短縮日数など、具体的な数値を用いて説明しています。その結果、「この改善により年間○○円のコスト削減や資金回収の短縮が見込まれます」と示すことで、提案の根拠が明確になり、納得感が高まっています。 改善行動は具体的? ③ 具体的な行動 月に一度、自部署のP/L・B/S指標(利益率や運転資本)を確認し、改善余地を探る習慣を取り入れています。また、各業務改善案ごとに数値効果を試算するフォーマットを作成し、改善施策の実施前後で数値を記録・比較することで、効果を可視化できる体制を整えています。

データ・アナリティクス入門

データ分析で解く業務の課題解決法

データ分析はなぜ有用? データ分析は、問題解決を確実に進めるために非常に有用であると理解しました。ライブ授業では、前提条件が整理されていたため、問題解決のステップである問題箇所の特定や絞り込みが比較的容易でしたが、実際のビジネス現場では、これらのステップが難しく、訓練が必要だと強く感じました。 売上減少はどう解決? 今回のライブ授業では、事業運営における売上減少という問題をデータ分析で解決する演習を行いました。その際の問題解決のステップは、1. Whatで問題を明確にし、2. Whereで問題箇所を絞り込み、3. Whyで原因を分析し、4. Howで解決策を考えるという流れです。 具体分析の進め方は? 具体的には、売上減少という問題を特定し(What)、売上を構成する客単価や客数のデータ分析を通じて問題の所在(Where)を特定しました。その要因を仮説・検証により原因分析(Why)し、次に打ち手を判断・評価する(How)という手順です。分析においては、データに基づいたストーリーを構築することが重要です。比較対象を明確にし、データを加工して必要な情報を可視化することがポイントです。 差異の原因は何? 日常業務でも計画と実績との差異分析を行っていますが、浅はかな要因分析に留まらないように、原因分析を網羅的に行うことが重要だと考えます。また、問題を明確にし、問題箇所を特定し、原因分析し、打ち手を考える一連の手順によって、データ分析が目的化せず、何を主張するための分析なのかを振り返ることができます。 定着はどのように? これらの問題解決のステップを習得し、データ分析を取り入れた一連の流れを月に2回以上実施することで、手法の定着化を図りたいです。特に、問題箇所の特定(Where)に苦手意識がありますが、事例を積み重ねることで対応時間の削減にも取り組みます。

戦略思考入門

差別化戦略を活かした新しい挑戦

戦略の基礎をどう活かす? 今週は、差別化の重要性とそれに基づく戦略について深く学ぶことができました。ポーターの3つの基本戦略については、それが戦略の方向性を決定するためのフレームワークであることを理解しました。戦略の方向性を定める際には、コスト・リーダーシップ戦略、差別化戦略、集中戦略の3つを考慮し、競争優位性や戦略ターゲット層の広さを整理します。しかし、競争優位性は常に続くわけではないため、環境の変化に敏感になる必要もあると学びました。 VRIO分析の重要性は? また、VRIO分析では経営資源の評価において、経済価値、希少性、模倣困難性、組織の4つの要素が重要であると教わりました。その中でも、特に組織が競争優位を築くのに重要であることを理解しました。経営資源を持っているだけでなく、その活かし方も考えるべきであり、ビジネスを展開する上でこの視点を忘れないようにすることの大切さを再認識しました。 新たな手法をどう実践する? ポーターの3つの基本戦略やVRIO分析を、自分の所属する会社やプロジェクトで実践的に活用したいと考えています。特に、ポーターの3つの基本戦略は新規プロジェクトで用いることで、基本的な方向性をしっかり定めていきたいと思います。そして、実際の企業事例についても調査し、業界をリードする企業がどのようにコスト・リーダーシップ戦略を機能させているのかを分析したいと考えています。 過去の手法はどう活用する? これまで、3C分析やSWOT分析をよく活用してきましたが、今週学んだ分析手法は新しく、まだ十分には活用できていません。まずは自社のサービスに当てはめて使ってみることで、実践に移していこうと思います。そして、戦略立案の際には、商品の差別化ポイントを明確にし、今回学んだ分析手法を活かして戦略を練っていきたいと考えています。

データ・アナリティクス入門

数字が照らす学びの道

どうやって特徴を捉える? 大量データを比較する方法として、まずデータの特徴をひとつの数字に集約し、グラフ化して視覚的に把握する手法を学びました。これにより、数値としての評価だけでなく、データの散らばりや傾向も同時に捉えることが可能になります。 平均値の違いを知る? 平均値や中央値を確認するために、単純平均、加重平均、幾何平均、そして中央値の各手法を比較しました。今まで単純平均や加重平均を主に用いていたため、このうち幾何平均と中央値の手順が分かっていなかったために、業務上物足りなさを感じていた点に気づくことができました。 分布の形はどう判断? また、データの平均的な分布をグラフ化することで、これまで感覚的に捉えていたデータの散らばりを、標準偏差などの具体的な数字として表現する必要性を認識しました。こうした数値化は、データのばらつきが大きいのか小さいのかを明確に捉える上で非常に有効です。 利用状況をどう見る? さらに、提供しているサービスの利用状況を単なる数の集計として週次報告している現状に対して、まだ活用できていないデータの中に、利用者の属性や利用時間帯などの詳細な情報が含まれているのではないかと考えるようになりました。これらを分析することで、サービスの改善点や利用者の利便性向上につながる提案が可能になると感じています。同様に、ライセンスやクラウドの予算についても、感覚的な予測に頼らずデータに基づいた数値をフィードバックすることで、より説得力のある結果に結びつくと考えています。 予測結果は合致? また、1年前に作成した将来のクラウド利用予測と現状を比較するタイミングを迎えたことから、その分析を活用し、利用していなかったデータも含めてさらに掘り下げていこうと考えています。あわせて、学習用の動画を見直すことで、自分自身の理解をより一層深める予定です。

クリティカルシンキング入門

小さな視点、大きな発見

データはどう見える? 一次データだけでは見えてこない傾向があるため、データをさらに細かく分け、グラフなどのビジュアル資料で確認することが重要です。 切り口の意味は? 刻み幅や意味のある切り口に基づく分け方を意識し、仮説を立てながらデータを整理することで、分け方によって異なる結論が導かれる点に注意が必要です。 全体像の正確把握は? 分解して検討した結果、特徴的な傾向が浮かび上がったとしても、それが全体を示すものではありません。すぐに結論を出さず、自分自身を疑う姿勢を持ち、思考の制約にとらわれないよう心がけることが求められます。MECEの考え方を活用しながら、全体を部分に分ける階層分解、売上を単価と数量に分ける変数分解、そして業務プロセスごとに分けるプロセス分解の手法を上手に使い分けるとよいでしょう。 分析の焦点は? 例えば、変数分解を用いてメンバーそれぞれの売上傾向を分析する際には、まず優れた成績の例と比較して単価や数量のどちらに課題があるかを明確にします。単価に問題がある場合は、コンタクト先を階層分解してどの層へのアプローチが不足しているのかを検討し、販売数量に問題がある場合は、プロセス分解を通じてどの業務プロセスに時間がかかっているのかや課題が潜んでいるのかを明確にすることが効果的です。 販売戦略の再考は? また、商品販売では、階層分解を活用して販売好調な商品の傾向を把握することが重要です。購入者を細かく分けることで、より明確なターゲット層を設定し、戦略の見直しに役立てることができます。 成果と速度の両立は? 実際の業務では、質の高い成果とともにスピードも求められます。トレーニングの積み重ねによって両立が可能だと考えていますが、実際の業務でどのように質とスピードを両立しているか、具体的な方法があればぜひお聞かせいただきたいです。

「分析 × 手法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right