デザイン思考入門

顧客の声が未来を創る

顧客の声をどう活かす? 顧客とのコミュニケーションを活用する考え方は、営業提案の際に顧客からのフィードバックを積極的に求めることで、具体的な課題や求める解決策を明らかにできる点が魅力的だと感じました。顧客が直面する問題の背景を深堀りすることで、提案に反映させるアイデアが生まれる可能性を実感しています。また、社内でのブレインストーミングやアイデア出しのセッションでも、従業員の体験や市場トレンドに基づいた意見交換を行うことで、新たな視点が得られると考えています。 直接対話で何を学ぶ? さらに、顧客と直接対話することで、従来のデータ分析だけでは捉えきれなかったニーズや感情を把握できることに気づきました。具体的な課題を共有するプロセスは、提案の精度向上や信頼関係の構築に大いに寄与することが分かりました。 発想の自由さは何故? また、デザイン思考の「発想」プロセスでは、顧客のニーズや課題を十分に理解し、自由な発想を促すことの重要性を学びました。実際の顧客の声に基づいて多様な視点を取り入れることで、創造性が一層高まり、プロトタイピングを通じて迅速に形にすることが、実践的な解決策を生む鍵であると再認識しました。

マーケティング入門

マーケティングで顧客満足を追求する旅

マーケティングの本質とは? マーケティングについて考えると、以前よりも広い意味を持つように感じていますが、本質的な顧客志向や顧客満足という点は、時代が変わっても変わらないと捉えています。マーケティングを考える際には、常にこれを念頭に置いていきたいです。 顧客満足を追求するには? 私の勤める会社も、昔から顧客を大切にすることを最重要視しています。ただし、接客だけでなく、より本質的なお客様の満足やインサイトを意識し、提案の際に活かしていくことが求められています。そのためには、素晴らしい商品を作ることよりも、顧客が本当に求めている商品やサービスを提供できるように、分析力を身につけ、高い視点から提案できるようになっていく必要があります。 定量化できない満足度への挑戦 顧客理解を深めるための方法やその数値化を手法として習得することに努めるつもりです。また、定量化が難しいイメージや口コミの分野で、納得感の持てる提案を行うためには、常に批判的思考を意識するようにしたいです。そのため、他者に提案資料の確認をお願いしたり、フィードバックや顧客の声を積極的に聞くこと、確認する習慣をつけることが大切だと考えています。

クリティカルシンキング入門

データの読み解きで広がる新たな視点

「眼に仕事をさせる」とは? 「眼に仕事をさせる」というキーワードが強く印象に残りました。データの素材を抽出した後、それをどのように分解して分析するか、「本当にそうなのか?」と丁寧に考えることの大切さを学びました。手を動かしてグラフに加工し、分解の方法を工夫し、分析結果を基にさらに複数の切り口で見直してみる。こうした広がりや深まりを追求することが、業務遂行上大切だと感じました。 顧客満足度を高める方法は? この考え方は自身の業務に限らず、顧客満足度を高めるための分析をメンバー間で進める際にも重要です。多くの切り口から傾向を探ることで、データ上から納得できる顧客感情の変化を捉え、ニーズに応えるストーリーを共に描きたいと思います。 視覚化の重要性は? グラフにして視覚化することで、数値の羅列では見えなかった傾向が見えてきます。しかし、多忙の中で実行できていない現状があるのも事実です。時間の制約がある中でも最適な分析を尽くすためには、「別の視点から見るとどうなのか?」と語り合える余裕を持つことが求められます。高い視座と粘り強さを有する強いチームづくりに向けて、今回の学びを生かしていきたいと感じました。

クリティカルシンキング入門

問い続ける実践の発見ストーリー

なぜ即答に飛びつくの? 今回、事前にさまざまな切り口でデータを分解して取り組んでみましたが、実践してみると答えにすぐ飛びついてしまう傾向に気づきました。こうした状況を避けるためにも、出てきた答えや傾向に対して常に「本当にそうなのか?」と問いかけることが重要だと学びました。 MECEで何を感じた? また、MECEの考え方を学び、もれなくダブりなく切り分ける基本的なパターンは把握できたものの、プロセス分解という視点は初めて触れるものであり、新たな発見となりました。 顧客分析はどう進む? 現在、顧客満足度調査を実施しており、まもなく結果が出る状況です。評価と顧客への対応との関係を分析する予定でしたが、今回学んだデータの切り口やMECEの考え方を活かして、層別分解に加えプロセス分解を取り入れた分析を試みたいと思います。 新手法に何を期待する? 来月には顧客満足度調査の結果分析を行う予定で、メンバーが実際に分析に取り組む中で、出てきた答えに対して常に「本当にそうなのか?」と問いかける姿勢を大切にし、層別分解とプロセス分解を組み合わせた新たな手法を提案していきたいと考えています。

データ・アナリティクス入門

見方ひとつで変わるデータの魅力

定量と定性はどう違う? 曖昧な依頼は何が問題? 定量データと定性データは、普段何気なく扱うものですが、実際には全く異なる情報だと実感しました。データ分析を進める際、曖昧な依頼で「とりあえずざっくりで」と指示してしまうことがよくあります。しかし、授業を通じて、何を知りたいのか、何を明確にする必要があるのかをあらかじめ仮説として立て、分析を進める重要性を再認識しました。 顧客情報はどう読む? 市場の声を捉えている? また、日常的に目にする商品開発や研究での顧客情報、市場ニーズといったデータも、単に眺めるだけでは業務に活かしきれていません。これからは、得られた情報から今後の方針を明確にし、必要な開発や提案に結びつける取り組みを進めていきたいと考えています。 グラフ化は何を示す? 話し合いはどんな効果? 普段の情報をただ見るのではなく、グラフ化するなどして多角的にデータを俯瞰し、チームメンバーとのディスカッションの機会を設けることが必要だと感じました。データ分析の楽しさや、他者へ説明し理解してもらえることで生まれる信頼関係も、業務を円滑に進めるための大切な要素だと実感しています。

クリティカルシンキング入門

データ分析の新たな視点を発見!

データの見方はどうなる? データの視点やグラフの表示形式が異なるだけで、見方が大きく変わることを実感しました。データ分析を行う際、まず仮説を立て、その仮説に基づいて情報を得るための切り口を考えたいと思います。逆に、他者が行ったデータ分析の結果を見るときは、その結果やグラフをそのまま信じるのではなく、見落としていることがないかを注意深く確認することを心掛けたいです。 顧客アンケートはどう見る? 業務で顧客アンケートを分析する機会が多いため、分析時に複数の観点から試してみたいです。また、サービス改善を設計するときにも、データを根拠にした設計ができるように役立てたいです。特に定性的データ、つまり自由記述のデータをどのように分析していけばよいのか、これからさらに学んでいこうと思います。 定性と定量の使い分けは? アンケート分析に関しては、事業部での週次ミーティングで報告することが多いため、その際には複数の観点からの分析結果を提示できるようにしたいです。また、定性的データの解釈に関しては、単独で分析するのではなく、定量的データと組み合わせて客観的に分析できるように努めたいと考えています。

データ・アナリティクス入門

分析の核心に迫る!比較の極意とは?

比較の重要性とは? 分析の本質は比較にあります。比較を行う際には、比較対象の性質が揃っているかに注意することが重要です。例えば、長野県のりんごの生産量と青森県のりんごの生産量の比較は適切ですが、長野県のりんごの生産量と静岡県のお茶の生産量の比較は不適切です。上述の例は分かりやすく示しましたが、ビジネスにおいては見た目上は比較されていても、実際には比較対象が揃っていない場合がありますので注意が必要です。そのため、分析においては、どのようなデータを集めるのか、何と何を比較するのかという前段階が特に重要だと考えます。 顧客満足度データの活用法は? 普段、弊社のサービスに対する顧客満足度の分析を行っていますが、データは十分にあるものの、うまく活用できていない部分もありました。これまで適切な比較ができていたのかを振り返りたいと思っています。 分析チームの新たな取り組みは? 明日は分析チームでの会議があるため、今回学んだ視点「分析の本質は比較であり、比較対象を揃えること」をメンバーに共有します。次の分析においては、比較対象についてメンバー間で共通の認識を持ち、適切なアウトプットに近づけるよう努めます。

クリティカルシンキング入門

データ分析で見つける新しい視点

データ加工の効果的な手法とは? データ加工の手法として、合計や割合を算出するための新しい列を加えることで、傾向や特徴を明確に把握できるという利点があります。また、これをグラフ化することも効果的です。 切り口次第で変わるデータ分析 データの切り口次第で傾向や特徴は変化します。そのため、どの切り口でデータを分けるかをしっかり考えることが重要です。さらに、グラフを活用することで、分析結果を視覚的に伝達しやすくなります。 広い視点で進めるデータ分析 データ分析を行う際には、When、Who、Howといった複数の切り口からデータを分解し、分析を進める必要があります。一つの切り口に頼らず、複数の視点から考えることで、より深い分析結果を得られると考えられます。 顧客増加へのデータ分析アプローチ 顧客を増やすためのデータ分析では、これらの手法が役立ちます。データ加工や分け方に基づいた分析結果をグラフで示すことで、発表時に結果を納得してもらいやすくなるでしょう。 新たな知見をどう活かすか? 今回学んだ知見をデータ分析に活かし、様々な切り口からの付加価値のある分析を目指したいと思います。

クリティカルシンキング入門

イシュー設定の重要性と技術活用法の探求

イシュー設定の重要性とは? イシューを設定することの重要さと難しさを実感しました。どのようなシチュエーションでイシューを設定するかによって、答えが大きく変わることを学びました。例えば、売上を上げるためのイシューにおいて、顧客の信頼を失っている時には価格を上げる決断は難しいですが、信頼を得ている時には価格を上げる選択も正しいと考えられます。状況をしっかりと分析し、適切にイシューを設定することが重要だと感じました。 技術の価値はどう測定する? 私たちの企業において技術の探索を行う際、技術の価値をピラミッドストラクチャーで分解し、その活用法を探ります。さらに、業界動向などの情報を収集し、以前は不採用としたイシューが現在適切であるかを再検討し、業務タスクに反映させます。また、上長に相談し、論理的な考えができているかフィードバックをもらうよう心がけています。 業務の方向性はどう深める? 日々の業務をピラミッドストラクチャーで分解し、その変化に応じてイシューを見直すことから始めています。上長とこのピラミッドストラクチャーを共有し、議論を通じて業務の方向性を組織全体で深めるよう取り組んでいます。

戦略思考入門

多角的視点で見直す戦略論

偏りと検討の重要性は? 今回の学習を通じて、戦略を考える際に自分の得意な考え方や方法に偏りがちな点に気づきました。そのため、フレームワークを用いて物事を多面的に検討する重要性を学びました。一面的な対策だけでは全体の整合性がとれず効果が限定的になってしまうため、さまざまな角度から得た情報を統合し、より効果的な戦略を策定する必要があると感じました。 社会的意義を考える? また、高い視点から自社の事業が持つ社会的意義を意識し、短期的な目標と長期的に実現したい姿とのバランスを保つことも大切だと学びました。これにより、戦略の全体像を捉えながら現実的な目標設定ができるようになりました。 市場と戦略の真意は? さらに、競合店舗のマーケティングリサーチを通して、顧客や市場全体のニーズ、そしてそれらを取り巻く社会情勢に対応した産業全体の戦略について考察する視点が身につきました。実際の売場を見る際には、その背景にある意図や戦略を分析し、PEST分析などの手法を活用して、どのような市場ニーズに応えているのかを考えるとともに、自社や自店舗が取るべき具体的な行動について再考することができるようになりました。

データ・アナリティクス入門

あなたを動かす学びの4視点

本質問題、どう捉える? 今回の学習では、問題解決のための4つの視点――What、Where、Why、How――を意識する重要性を学びました。特に、解決すべき本質的な問題(What)を明確にし、理想と現状のギャップを把握することが、メンバー間の認識のズレを防ぐ上で非常に重要だと感じました。 サービス提供は課題? また、長期的な利益向上のためには生徒数の増加が求められる一方、現状のサービス提供体制ではスタッフへの負荷増大や顧客満足度の低下といったリスクも伴います。これに対し、各講師が対応可能なクラス数や新人講師の育成にかかる期間・コスト、顧客満足度に影響を与える要素など、具体的な定量データを基に現状を整理し、対策の優先順位を明確にすることが必要だと実感しました。 日常業務、どう対処? さらに、日常業務においても、状況把握や効果検証、施策の試算などのプロセスにおいてWhat、Where、Why、Howの視点を取り入れることが重要です。分析開始前にロジックツリーなどを用いて問題の全体像を整理し、関係するメンバーと認識を共有することで、より精度の高い対応策を講じることができると感じました。

データ・アナリティクス入門

中央値でひも解くデータの秘密

代表値と分布はどんな意味? データ分析では、まず代表値と分布の理解が重要です。代表値には単純平均、加重平均、幾何平均、そして中央値の4種類があり、それぞれの特徴を把握する必要があります。一方、分布は標準偏差を用いて表現され、対象に応じた適切な代表値を選ぶことが求められます。 中央値はどう計算する? そのため、中央値や標準偏差といった指標は数式に基づいて算出されますが、原理原則を理解すればエクセルの数式機能を活用して求めることが可能です。 平均と中央値の違いは何? この考え方を踏まえて、昨年度に最も支払い額が大きかった顧客のデータを例に、代表値と分布を算出してみます。特別な事情で多額の支払いが発生しているため、単純平均と中央値の数字の違いを確認し、代表値としては中央値のほうが適していると考えられます。 期間内のデータ比較はどう? さらに、対象となるのは2024年4月から3月までの期間の顧客データです。各顧客に対して毎月の支払額の単純平均と中央値を求め、また支払いの内訳に記載されている各顧客品番ごとの費用についても、同様に毎月の単純平均と中央値を算出して比較していきます。

「顧客 × 分析」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right