データ・アナリティクス入門

データ分析で改善への道筋を見つけよう

分析の基礎を見直すには? 分析とは、データの要素を整理し、比較対象や基準を設けて比較することです。目的や比較対象が曖昧だと、分析とは言えません。データを漫然と分析し始める前に、その要素を整理し、明確な目的を持って比較することが重要です。 可視化手法の多様化を 分析の結果を効果的に見せるためには、定量データの種類に応じた加工方法やグラフの見せ方を工夫する必要があります。これまで自己流でデータを可視化してきたこともありますが、さらに多様な手法を学び、見せ方を向上させていきたいと考えています。 採用分析をどう進める? 採用に関わる分析とその対策については以下のように進めます。まず、分析の目的を明確にし、具体的な比較対象を設定することが重要です。例えば、「前週比での応募者数の変化」や「媒体別、フェーズ別の歩留まり」といった視点で分析を行います。これにより、漠然とした分析を避け、得られる洞察が増します。 データを効果的に可視化 また、データの可視化については、週次データの推移を折れ線グラフで表現したり、部署別の採用状況を棒グラフや円グラフで示すなど、データの特性に合った適切なグラフを使います。こうした方法で、データの傾向や課題がより明確になり、効果的な対策の立案に繋がります。 分析のブラッシュアップ方法 今後、目的を複数設定し、分析のための要素分解や比較対象の再設定(過去3年間や各媒体ごとなど)、統計データの整理、分析手法の見直し、結果の行動変容といった点についても改善を重ね、週次で行う分析をブラッシュアップしていきたいと思います。

データ・アナリティクス入門

データ分析で未来を切り拓く方法

分析の前提は合ってる? 「分析とは」「データについて」「ビジネスにおける分析」についての解説を通じて、日常の業務における暗黙の前提が見直される機会となりました。データ分析には、それぞれの経験により前提や基盤となる考え方にバラツキがあることが分かり、データを比較する目的を意識する大切さを学びました。ワーキンググループでは、積極的に意見交換を行い、メンバーからの多くの意見を参考にしつつ、自らの意見も発信できたことに感謝しています。 未来予測をどう図る? 普段の業務では、「分析とは」「データについて」「ビジネスにおける分析」についての振り返りを行い、業務の流れを見直すことができました。社内のKPI達成のために、次月に向けた改善計画を策定していますが、過去の実績結果をもとにした流れだけでは未来予測が考慮されていないことに気づきました。そのため、未来予測をデータとして仮想化し、改善計画に組み込むことで、より効果的なアクションを起こしていきたいと考えています。 改善策はどう統一? 現状では、分析後の改善アクションが各メンバーの個人裁量に委ねられていることに気づきました。この活動を通じて得たデータを元に、ベースラインを見つけることで、他の拠点や部署にも均質な業務品質を展開できる可能性があると感じています。 新たな発見はある? 一方、メタ思考的な視点から、社内に未分析の領域があることも考えられます。これらを確認し、分析する価値が見出された場合には、新たなデータ取得の検討や仮説構築を通じて、具体的な成果を導き出す道筋を考えたいと思います。

データ・アナリティクス入門

未来を変えるデータの魔法

データはどう戦略へ? 講座全体を通じて、データ分析の重要性と問題解決のフレームワークが非常に印象に残りました。データ分析は、過去のデータを活用することで客観的かつ効果的な戦略の立案を支え、意思決定の根幹となります。また、4つのステップを用いる問題解決法は、複雑な課題を整理し、具体的なアクションプランを導き出す助けとなりました。グループワークでの意見交換を通じて得た新たな視点も、学びを一層深める貴重な経験でした。これらの学びは、今後の業務にも積極的に取り入れていきたいと感じています。 キャリア教育、なぜ必要? また、今回の学びは社員のキャリア教育や研修の現場にも十分に活かせると実感しています。社員のキャリアパスやスキルセットに関するデータを分析することで、効果的な研修プログラムの企画が可能になります。さらに、研修後の業務成果を比較分析することで、プログラムの効果を検証し次回以降の改善に結び付けることができます。社員のキャリア希望を正確に把握し、それに基づいた教育プログラムを設計することで、より有意義な支援が実現できると考えています。 改善はどう実現する? 具体的には、まず社員のスキルやキャリア希望に関するアンケートを実施してデータを収集し、その後、得られたデータをしっかりと分析します。分析結果をもとに効果的な研修プログラムを企画し、実施後は参加者からのフィードバックを反映させた改善サイクルを構築します。こうした取り組みにより、社員の成長を促進し、キャリア教育の質を一層高めることを目指しています。

データ・アナリティクス入門

因果の謎を解く学びの旅

因果と相関、どう考える? 相関関係と因果関係をセットで分析すると、その結果をもとに具体的な打ち手を考えやすくなります。具体的には、因果関係が成立するためには、「時間的順序が正しいこと」「相関関係が存在すること」「第三の要因が介在しないこと」という3つの条件を満たす必要があります。 時系列分析ってどう? また、過去のデータを活用して将来を予測する際には、時系列分析が非常に有効です。これに加えて、パレート分析やウォーターフォールチャートといった手法も、データの分析や可視化に役立ちます。 データ収集は大丈夫? データ収集にあたっては、対象が意味のあるものであるか、アンケートや口頭での聞き取りといった方法が適切に実施されているかを確認することが重要です。 契約商品の予測はどう? さらに、契約商品同士の相関関係や因果関係を把握することで、因果関係が認められる商品から、契約しやすい商品を予測して提案することが可能になります。特に、履歴などの時系列データを活用して、時系列データの4つの要素を理解し、使用するデータが何に該当するかを明確にした上で分析を行うことが求められます。 定義変更、何をチェック? 最後に、データの収集段階では、データの定義が変更されていないかどうかを確認した上で、顧客情報や各種商品の契約状況をリスト化し、各種商品間の相関係数を算出します。もし、相関が認められる商品同士に因果関係が存在する場合は、その因果構造に基づいた商品提案を検討することができます。

データ・アナリティクス入門

数字が語る学びの物語

データ全体像は? データ比較や数値化、数字に集約して捉える方法、さらには視覚的および数式を通じて関連性を把握する手法について学び、大変参考になりました。これにより、データの全体像を把握しやすくなると感じています。 平均の違いは? 目的に応じて、単純平均だけでなく、加重平均、幾何平均、そしてはずれ値に対応する中央値など、さまざまな平均値の使い分けが有用であると再認識しました。数字を分析する際、データの中心値と散らばりを考えるアプローチは非常に重要です。 標準偏差はどう? 特に、これまであまり意識してこなかったデータのばらつき、すなわち標準偏差の理解については、自己学習が必要だと思いました。今回の学習を通して、データ分析においてばらつきの考慮が結果に与える影響の大きさに気付きました。 実践はどう進む? 今後は、学んだ知識を生かし、エクセルを活用してグラフ化するなど、実践的なアプローチに取り組んでいきます。また、どのデータを分析するかはまだ模索中ですが、さまざまな場面で応用できるよう、引き続き自己研鑽を積んでいく予定です。 難解概念の壁は? 一方で、「平方根」、「標準偏差」、および「正規分布と2SD」といった概念は難解に感じたため、これらの理解を深めるためにさらなる学習が必要だと感じました。また、過去に業務で使った経験がある「幾何平均」についても、当時はあまり考えずに対応していたため、Raw dataを見直しながら基礎から再確認していきたいと考えています。

アカウンティング入門

経営指標を使いこなす力を磨く

ケーススタディで何を学んだか? 実際のケーススタディを通じて、P/Lの各項目である営業利益、経常利益、そして当期純利益の増減を比較し、「仮説を立てて検証する」方法を学びました。例えば、「売上高が増えているが売上総利益が減っている理由」として、売上原価の増加という事実を確認し、その原因を推測するプロセスがとても理解しやすかったです。 P/Lを読む際の重要ポイントは? また、P/Lを読む際に重要なポイントも学びました。まず、大きな数字である売上高、営業利益、経常利益、当期純利益を押さえることです。次に、分析においては、比較・対比を通じて傾向の変化や大きな相違点を見つけることが大切です。 どのように過去のP/Lを活用する? 具体的には、自社の過去のP/Lの推移を分析して結果を確認し、今後の予測を立ててみることが重要です。中長期計画を考える際に、これらの分析結果や予測を参考にすることができます。また、同業他社や興味のある会社、業界のP/Lを確認し、好調・不調の推移やその原因を予測することも有益です。 具体的なアクションは何か? 私が取り組むべき具体的アクションとしては、自社のここ数年のP/Lの推移を確認し、今期の予測値について増減の理由を仮説することが挙げられます。同業他社の公開されているP/Lと自社を比較することも重要です。さらに、関連する書籍に掲載されている数社のP/Lを確認し、読み取れることをまとめていきたいと考えています。

データ・アナリティクス入門

仮説が拓く自分発見の旅

仮説はなぜ重要なの? 仮説を持つことは非常に重要です。物事を早急に結論づけるのではなく、複数の視点から検証し、多角的に物事を捉えることが大切です。 結論への仮説は? 具体的には、結論に向けた仮説と問題解決のための仮説の二種類を考えます。前者は提示された論点に対する仮の答えとして、後者は実際に問題を解決するための道筋として役立ちます。 仮説の意義とは? 仮説を考える意義は大きく三点あります。まず、仮説を立てることにより検証マインドが向上し、説得力のある議論が展開できるようになること。次に、問題に対する関心や意識が高まる点。そして、仮説をもとにした検証プロセスが、最終的な結論に至るスピードアップに寄与することです。こうした仮説検証のプロセスには、アンケートやテストなどの具体的な手順を踏むことが有効です。 なぜ多角的に検証する? また、クライアントのブランドリフトの結果や売上の変動を見た際に、すぐに結論を出さず、なぜその結果が生じたのかを複数の切り口で検証していく必要があります。検証の際は、過去、現在、未来という時間軸に沿って仮説の内容が変化する可能性も考慮することが重要です。 検証の手順はどうなる? まずは情報やデータを収集し、各因子が売上や認知にどのように影響したのかを多角的に検証してください。その手段として、相関分析やヒストグラム、グラフなどによるデータの可視化、さらにはインタビューや簡易調査の実施が効果的です。

クリティカルシンキング入門

目的意識が成功の鍵:意思決定を振り返って

クリティカルシンキングを学ぶ意義は? クリティカルシンキングの3つの姿勢を学ぶことで、自分自身の反省すべき点を改めて認識することができました。特に「目的を常に意識する」という点については、大いに反省材料がありました。過去を振り返ると、目的を意識して行動することができていない場合も多々ありました。 意識できない目的の影響とは? 思考する際、自分の習慣として目的を意識できない場合、重要な意思決定の場面で発揮されず、誤った決断をしてしまう可能性があることを痛感しました。 医療業界での具体的な反省点 私が所属する医療業界において、新たな店舗展開をするケースを振り返ってみました。その地域のマーケティング調査は十分に行うものの、「その地域に出店する目的は何か」という問い自体が疎かになっていました。「目的=店舗を出すこと」という誤解した状況が繰り返されていたことに気づいたのです。今後は、このような場面で目的を強く意識し、熟慮した結果で意思決定することを実践していきたいと思います。 日常で目的を意識する方法 まず、自身の習慣として「目的は何か」を意識することを徹底し、誰のために・何のために・なぜ今なのか・他に代替手段はないのか、といった問いを自分に立てるようにします。また、その一つ一つの問いについて外部とも十分なコミュニケーションを通じて確かめ合い、納得できる答えを持って前に進んでいくことを意識して行動するようにしていきます。

データ・アナリティクス入門

小さな挑戦が未来を創る

問題の原因は何? 問題を特定する際には、まずプロセスごとに整理して考え、複数の案に対して各々の確度を点数化して比較検討する手法が有効だと学びました。また、仮説検証のために小さいサイクルを繰り返すことで、実際の運用の中で迅速に改善策を試すことができると感じています。過去に広告のABテストを実施した経験から、構造を改めて理解することもできました。 チーム士気は上がる? 実務者はこのような小さいサイクルの繰り返しによる検証の重要性を十分に理解している印象ですが、一方で意思決定者はサイクルの大きさに注目しがちだと感じました。今回の学びを社内で明確に説明することができれば、チーム全体の士気向上にもつながるのではないかと考えています。 売上の謎を解く? たとえば、自社ECサイトのアクセス解析において、「特定商品の売上が伸び悩んでいる一方で、検索数は増加している」という状況が見受けられた際は、売上の構成要素や購入プロセスを分解して整理しました。その上で構築した仮説をすぐに検証し、実践することで問題解決に取り組んでいます。 効果はどう確認? また、繁忙期前にECサイトでセールを実施する際、消費行動を促すフレーズの効果を明確にするため、あらかじめ広告のABテストを行いました。テストの結果をもとに効果の高いフレーズを特定し、繁忙期のセールページに反映させることで、より成果を上げる工夫をしています。

データ・アナリティクス入門

比較思考で紐解く学びの極意

分析の意味は何? 「分析は比較なり」という言葉は、普段何気なく耳にするものですが、今回改めてその意味を強く感じました。データ分析において、必要な情報を集めることに注力し過ぎるあまり、単にデータを並べただけで満足してしまい、見る人によっては分析結果の捉え方に差が生じる場面があったと実感しています。動画学習では、適切な比較対象を選ぶことの重要性にも触れ、データを揃える行為は無駄ではないものの、分析の目的や見せ方を意識しなければ本来の意味での分析にならないということを認識しました。 物流の選定はどう見直す? この考え方は、物流部門における利用業者の選定や見直しにも応用できると感じます。たとえば、ある条件がある場合とない場合で、一律運賃が設定される荷主とそうでない荷主の運賃総額を比較する手法が考えられます。 大手と中小の差は? また、単純に大手業者と中小業者を料金面で比較するのではなく、企業の規模や対応する配送範囲が同様である業者同士で運賃を比較することが、より適切な分析につながると理解しました。 比較対象の妥当性は? さらに、自分が揃えたデータが本当に比較に適したものかどうか、常に振り返りを行うことが大切です。普段利用している輸送業者に注目し、過去の実績が明確な業者だけを比較対象にしている現状を見直し、新たな業者や新しい地区の業者も検討することで、より多角的な視点を持つことができると感じました。

データ・アナリティクス入門

迷走も学びに変える仮説実践

集客の見直しはどう? 実践において、当初「集客」を問題と考えていたものの、活動を進める過程で「集客」を見失い、結果として問題の本質に気づくのが遅れてしまいました。この経験から、目的を常に意識しながら進める重要性を再確認しました。 仮説の多角的検証は? また、動画講義では仮説思考の実践方法について学びました。複数の仮説を網羅的に検討し、一つだけに頼るのではなく、多角的な視点から論点を捉える必要があると実感しました。反論を受け入れる姿勢や、都合の良いデータ集めを避けることで、仮説が誤っている場合にも柔軟に見直すことができるという点に大きな気づきがありました。 仮説の役割は何? さらに、仮説の種類やその役割についても理解を深めました。論点に対して仮の答えを示すコミュニケーション仮説と、問題を解決するための問題解決仮説といった区分や、失敗の原因究明といった過去の事例、あるいは未来の展望に基づく仮説があることを学びました。これらの仮説に検証計画をセットにして進めることで、説得力が増すことを実感しました。 学びと実践の道は? 今後は、複数かつ網羅的な視点で仮説を立てるため、各種フレームワーク(例:4Pや3Cなど)を積極的に学び、状況に応じて最適なものを選ぶ意識を持ちたいと思います。同時に、仮説と検証をセットにした提案を自分自身だけでなく、チーム全体で実践することが重要だと考えました。

データ・アナリティクス入門

データ分析力で未来を切り拓く

比較で何を探る? 「分析とは比較なり」という言葉が示すように、分析を行う際には、条件を整えて比較し仮説を立てることが重要です。この手法は、日常的にデータを扱う作業の中で非常に役立っています。例えば、全国推奨品になった製品のシェアが推奨される前後でどの程度伸びているのか、値下げ要求に応じた場合に売上がコストダウンのインパクト以上に増加したかどうかなどの質問です。 目的と条件はどう? 分析を始める前に、分析の目的とデータの条件がしっかりと整っているかを確認します。目的がはっきりしていなければ、分析結果は曖昧になり、有益ではなくなってしまいます。また、「生存者バイアス」という思考に陥らないように、成功体験だけでなく失敗からも学ぶ意識を持ち続けたいと思います。たとえば、競合との製品コンペに勝つためには過去の成功事例から学ぶだけでなく、敗北したケースの反省点を検討し、どこが競合よりも劣っていたのかを追求していくことが重要です。 データの見せ方は? さらに、データの見せ方も大切です。数字やパーセンテージで示すべきか、どのようなグラフを使用するかを考え、視覚的に訴える効果的な方法を選択することが求められます。こうした分析の技法や思考法は、データを扱う日々の作業の中で重要な役割を果たします。ファクトに基づいた正確な分析結果を出し、それを適切に伝えられるように努めていきたいと思います。

「結果 × 過去」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right