データ・アナリティクス入門

仮説で拓く学びの道

分析の基本は何? 本資料は、分析を比較の視点から行い、仮説思考を持って問題に取り組むための考え方と手法を示しています。分析の要点として、プロセス、視点、アプローチの三つの軸が必要とされ、各軸が互いに補完しながら、より深い理解を促すことを意図しています。 プロセスをどう考える? プロセスでは、まず目的や問いを明確にし、その問いに対する仮説を立てます。次いで、データを収集し、分析によって仮説を検証するという流れが求められます。 視点と工夫は? 視点については、インパクト、ギャップ、トレンド、ばらつき、パターンといった観点からデータを捉え、それぞれの側面から情報を整理していきます。一方、アプローチでは、グラフ、数字、数式などを用いて、情報を視覚的かつ計量的に表現することで、理解しやすくする工夫が大切です。 可視化はどう? 比較のための可視化手法としては、データの特徴を一つの数字に集約する方法、グラフ化して目で捉える方法、そして数式に集約するアプローチがあります。これにより、データの持つ意味がより明確になります。 代表値は何? また、データを見やすくするためには、代表値と分布の確認が有効とされています。代表値としては、単純平均、加重平均、幾何平均、中央値などがあり、一方、ばらつきを見るためには標準偏差が活用されます。特に、95%のデータが含まれるという2SDルールは、分布の確認において重要な指標となります。 契約単価の意味は? 具体例として、【1】の契約単価の場面では、相加平均を用いた結果、受注率などの違いが十分に反映されず、平均値が大きく見えてしまうという事実が挙げられます。そのため、加重平均を用いることで、感覚に近い平均単価が算出できる可能性が示唆されます。 成長率はどう考える? また、【2】の成長率の場面では、合計の成長率を足して年数で割る方法が用いられていましたが、こちらは幾何平均を利用するアプローチが適切です。具体的には、(1+x)^2=◯年後の売上/スタート年の売上という考え方に基づく計算が求められます。 計算見直しは? これらの考え方を踏まえ、Q2では【1】と【2】の実際の計算を見直し、過去に作成したデータを再評価する行動を取る必要があります。また、平均値の計算方法一覧を見える場所に保存し、必要な際にすぐに確認できるようにすることで、定着した学習行動が実現されることが期待されます。

クリティカルシンキング入門

データ解析で見つけた学びの旅

情報をどう分解する? 情報を解析するためには、その情報を分解する方法を学びました。まず、解析する全体の情報を定義します。このとき、いつからいつまでの情報を扱うのかを確認することが重要です。その上で、単に機械的に分けるのではなく、なぜそのように分ける必要があるのかを考え、複数の視点から情報を分解します。一つの視点での分解では、漏れや重複がないかを確認します。また、時間や場所を考慮したプロセスの分解を行い、比率や分布、変化率などを表計算で工夫することで、情報の正確な分解が可能になります。最初は大まかに分解し、解像度を上げるように進めます。 医療データ分析のポイントは? 医療業界のデータ分析について、二つの要点を実施します。まず、新規紹介患者数の分析です。2018年から2024年を対象にし、この期間には特に2020年から2023年のコロナ禍の影響を考慮する必要があります。データを患者の年齢、性別、疾患別、および病院の診療科や紹介元医療機関の規模(病院、地域クリニック)、さらには緊急性で分解し、変化率を算出します。これにより、患者属性や病院要因が新規紹介患者数に与える影響を明らかにし、コロナ禍による変動を正確に分析します。 外来患者満足度はどう評価? 次に、外来患者満足度調査の分析を行います。毎年実施されるこの調査の結果をもとに、単年度での解析のみならず、経年変化を評価して改善の有無を把握します。回答者を年齢、性別、通院歴(初診、再診)で層別化し、通院プロセスを受付、診察、待ち時間、会計などに分解して感想を解析します。過去3年のデータを用いて変化率を算出し、患者満足度の変化を定量的に把握します。これにより、外来プロセスにおける成果や改善点の特定と評価を行います。 ① 新規紹介患者数の分析では、2018年から2024年のデータを収集します。収集の際には、層別分析ができるように、患者データをリストアップし、疾患分類や医療機関の規模の基準を明確にします。整理されたデータは、解析しやすいように専用シートにまとめ、欠損データの程度を確認して、その分解が有意義であるかどうかを評価します。 ② 外来患者満足度調査の分析では、過去3年のデータを収集し、年齢や性別、通院歴、通院プロセスに基づいて解析できるようデータを整理します。また、来年度以降のアンケート項目や質問順序の見直しを行い、「何を解析するべきか」「なぜ解析するのか」を明確にした上で設計を行います。

リーダーシップ・キャリアビジョン入門

状況に合わせたリーダーの挑戦

部下評価の背景は? これまでは、部下のスキルや経験、自立性といった適合要因のみに着目し、一人ひとりを固定的に捉えていました。業務の難易度や新規性にかかわらず、ある種の型に当てはめていたため、パス・ゴール理論についても十分に理解できていなかったと感じています。 リーダーの柔軟性は? 同じメンバーに対しても、状況―環境要因と適合要因―に応じてリーダーとしての行動を柔軟に使い分ける必要があることを実感しました。状況によっては、異なるスタイルを組み合わせることが有効であると学んだのです。過去には、異動や担当変更、組織・チームの変化により急に仕事がうまく進まなくなった経験があります。当時は知識や経験の不足が原因だと捉えていましたが、今回の学びを通じ、リーダーの関わり方が結果に大きく影響する要因であると改めて気づかされました。 経験不足はどう? 現在の担当業務はルーティンワークがなく、チーム全員が初めて取り組む内容のため、試行錯誤を前提とした協働が求められます。振り返ってみると、指示型、支援型、参加型の振る舞いが多く、その中でも参加型が最も多かったと感じています。 期待効果は何? 今回学んだことを踏まえ、期待したい効果は以下の通りです。まず参加型については、チーム内に年上のベテランが多く、各自が豊富な社会人経験を持っています。意思決定の過程で各人の意見を出し合う場を設けることで、チームとしての納得感と主体性の向上を狙います。支援型に関しては、基本的に自立して仕事を進められる中堅メンバーに対し、必要に応じて障害の除去や軌道修正などのサポートを行い、今後の成長を促進させたいと考えています。そして指示型は、ほぼ新入社員に近い位置づけの年下の若手に対し、小さな成功体験を積めるよう具体的な指示を心がけ、自信をもってアウトプットできる土台づくりをサポートするものです。 環境と適合の関係は? また、Q3の割り振りにあたっては環境要因を一定とし、主に個々の適合要因を基に検討しました。場合によっては環境要因も加味し、リーダーとしての行動を変える必要があるかどうかを見極めています。 自分らしさはどう? 行動を変える際には、本来の自分らしさを大切にする一方で、状況に応じて『演じる』意識を持つことも重要だと感じました。今回のワークを通じ、職位が上がるにつれて場面に応じた振る舞いがより求められると実感しています。

データ・アナリティクス入門

対概念で拓く経営戦略の新視点

対概念の意義は何? 対概念とは、ある概念に対して反対または対照的な意味を持つ別の概念を考えることで、物事をより明確に理解し議論の幅を広げる手法です。問題解決に取り組む際は、原因をプロセスに分解する方法、複数の解決策を根拠をもって絞り込む視点、A/Bテスト方式を活用した実践検証、そしてデータ分析を組み合わせた段階的な課題抽出と検証の流れが重要となります。 M&Aリスクはどう考える? 例えば、M&A案件のリスク評価と意思決定においては、ポジティブな要素であるシナジー効果と、ネガティブな統合リスクを対概念として捉え、財務リスク、組織文化、オペレーションといった要因に分解して考えます。各リスク要因を定量化することで、M&A後の成功確率を高めるためのより正確な判断が可能となります。 統合戦略はどれが最適? また、企業の経営戦略策定、特にM&A後の統合戦略においては、段階的統合と急速統合という二つのアプローチを検討し、A/Bテスト方式でそれぞれの効果を比較します。統合プロセスの進捗データや業績、従業員満足度といった具体的な指標をもとに、どちらの戦略がより良い成果を生むかを実証的に評価していきます。 リスク評価の秘訣は? さらに、リスク評価のためのフレームワーク作成では、過去の成功事例や失敗事例をデータベース化し、財務、組織文化、オペレーション、市場環境といった指標を基にリスク評価シートを作成します。これにより、各案件ごとのリスクが客観的に評価され、精度の高い投資判断を導き出すことが期待されます。 定量化結果は何? 続いて、データ分析を用いた定量化では、財務データや従業員エンゲージメント、企業文化の適合度を測る指標を設定し、回帰分析や相関分析を活用します。特に、文化の不一致が従業員の離職率に与える影響などを数値化することで、過去のM&Aデータから成功パターンや失敗パターンを明らかにし、これを次の意思決定に生かすことが可能となります。 結果の信頼はどう確保? 対概念とA/Bテストを通じて物事を深く理解しようとする姿勢は非常に評価できます。今後は、どのような状況で対概念を活用するのが効果的か、またA/Bテストで得られた結果の信頼性をどのように確保していくかといった点について、さらに思考を深めながら実践につなげていくことが求められます。

データ・アナリティクス入門

目的を導くデータの羅針盤

最初に何を明確に? 分析に着手する際、何から手をつけてよいのかわからない状態でしたが、まずは「目的」を明確にし、何を知りたいのか、また改善点につなげるにはどうすればよいのかを意識しながらデータと向き合うことが大切だと実感しました。その上で、データ分析の前段階として、比較対象となる条件を整理し、どの条件や項目を設定するかを精査することが、結果の精度を高める鍵であると理解できました。 整理方法はどうする? 授業からは、細かい点まで明確に比較できるように各要素を分けて整理する方法や、項目を一覧化して理路整然と進める手法を学びました。また、その調査結果の意味や期待される効果について問いかけながら項目を設定する重要性、そして各データ項目ごとの感覚の違いを補うために他のデータを参照する必要性についても示唆を得ました。さらに、数字を加工して割合を算出しグラフ化する際は、情報の性質に応じたグラフ(要素間の割合には円グラフ、上下の数値比較には縦棒グラフ、要素間の比較には横棒グラフなど)を効果的に用いる工夫が求められると学びました。場合によっては、実数そのままで比較したほうが効果的なケースもあるという点も印象的でした。 ビッグデータをどう見る? また、スモールデータとビッグデータの違いに触れ、ビッグデータを扱う際には「クレンジング」に注意し、類似性の高いデータを抽出することで、過去のデータを新たな価値に変えていくプロセスの重要性も認識しました。データ分析は、目的と仮説に基づいた切り口の設定、データ収集、加工、発見、そして結論へのプロセスを着実に踏むことが不可欠で、見えている加工データと状況や根拠に基づいた解釈とを組み合わせることで、より説得力のある分析結果が得られると感じました。 広報戦略はどう考える? 具体的な広報戦略を考える際には、施策を大項目から小項目へと段階的に設定し、戦略の目的に沿ってPRのアイディアを複数仮定しました。その上で、各ツールの選択肢や条件を一覧化し、データを当てはめて比較検討することが効果的であるという実践的なアプローチも印象深かったです。 グループ作業はどう? グループワークでは、見えている加工データに状況や他の根拠・解釈を加えて分析する手法が強調され、その具体的な組み合わせ方や実例について、さらに深掘りして聞いてみたいと感じました。

データ・アナリティクス入門

データ分析で未来を築く!ナノ単科の意義とは

なぜ分析の目的を見失わない? まず、「何のために分析するのか」という「目的」を見失わないことが重要です。その上で、その目的を果たすためにはどのようなデータをどのように分析すれば良いのかという「仮説」を立てることが必要です。その仮説に基づき、必要なデータを収集し「意味を読み取る」ために適切にデータを加工し、その分析結果から新たな発見を導き、より良い意思決定を行うことが求められます。 データビジュアル化の役割とは? データ分析の一連のプロセスにおいて「意味を読み取る」ためには、代表値である平均値および中央値、ばらつき度合いを分布として示す標準偏差を用いた全体像の把握が重要です。また、それらを一目で容易に把握するためにデータのビジュアル化も欠かせません。そして、ビジュアル化されたグラフを見る前に、それまでに得た定量情報や定性情報をもとに自らの解釈と仮説を立て、その解釈・仮説と実際のデータを比較するアプローチを繰り返すことで、分析を深めていきます。 データ分析の順序を守るには? いざデータを前にすると、「仮説を立ててデータを見る」のではなく、「データ同士を比較して仮説を立てる」という癖があることに気づきました。この順序を間違えると意味がなさず、分析を深堀りできません。自然と正しいプロセスを踏むことができるようになるまで、意識して練習を繰り返したいと思います。 予算策定に活かす分析手法は? 直近では、予算策定にこのアプローチを使います。過去の売上や原価をもとに、標準偏差、加重平均、幾何平均、中央値を使ってより確からしい代表値を出し、定性情報も加味して来期の予算を策定します。この際、「仮説を立ててデータを見る(仮説との比較)」ことを意識して取り組みます。また、その代表値にした理由や定性情報の扱いについて第三者と共有し、対話を重ねることで、納得性のあるものとして示すことができるように努めたいと考えています。 今後意識する改善点は? 今後、以下の点を意識して取り組みます。 1. 標準偏差、加重平均、幾何平均について再度勉強し、特徴を深く理解する。 2. 「結論ありき」や「経験と勘」に頼らず、データ分析のプロセスを一つずつ丁寧に踏む。 3. 定性情報を「落としどころ」や「決め打ち」の要素として扱わないように意識する。

データ・アナリティクス入門

データ分析で見つける新たな視点

データ分析における比較の重要性とは? データを比較することは、他のデータと比較することでその意味合いを読み取ることにあります。繰り返しになりますが、「分析は比較なり」が重要です。単純な平均では見落としやすい情報を把握するために、データのビジュアル化を駆使し、バラつきを視覚的に理解することが求められます。比較を行い、グラフを解釈することで仮説を立て、その結果として次に分析すべきデータや分析の深掘りの方向性が明確になります。 代表値だけで十分か?アプローチを考える 大量のデータを比較するアプローチについて考える際、代表値の使用だけではデータの分布状況がわかりません。データの分布を考慮するために、標準偏差を併用します。標準偏差が大きければバラつきが大きく、小さければデータが集約していることを意味します。また、データをビジュアル化することも重要です。実際の業務では、加重平均とデータのビジュアル化が主に行われています。 代表的な数値には以下のものがあります: **代表値** 1. 単純平均 2. 加重平均 3. 幾加平均 4. 中央値 **散らばりを表す数値** - 標準偏差:標準偏差が大きいとデータがばらつき、小さいとデータが集約している。正規分布と2SDルールも考慮します。「起こりにくいことが起こっている」という実感値は5%です。 分析の深化にはどのプロセスが必要? 分析の内容に応じた代表値を使い、内容に応じたビジュアル化の方法を考えることが大切です。案件の特徴を「プロセス×視点×アプローチ」で分析することに重きを置くと良いでしょう。会社の施策展開にあたっても、目的に応じた比較を行い、ビジュアル化し、そこから仮説を立てて分析を深めていくサイクルを徹底していきます。過去の導入事例から仮説検証を行い、どの層にヒットしているかをビジュアル化し、現在進めているターゲティングの選定を進めていくことが求められます。 学びの共有はどのように行う? まず、メンバーにWEEK3の学びを共有し、現在取り組んでいる施策のターゲティングに役立てたいと考えています。根拠のあるデータを作成し、より良い意思決定に繋げることが目標です。代表値と標準偏差の仕組みを理解し、必要に応じて使い分けるために、日常の業務に取り入れてみることから始めましょう。

クリティカルシンキング入門

イシューを明確にして学びを深める力

学びを定着させるには? 改めて、「イシューを明確にする」「問いを立てる」「分解する」「視覚化する」ことの大切さが印象に残りました。GAiL内にも記載しましたが、全週を通してこれらの点が一番印象に残っています。これは自らの弱みでもあり、今後も受講して気づいたこと、学んだことを心に留め、大切にしていきたいと思います。 アウトプットの重要性とは? 学びを深めるためには、「アウトプット」と「振り返り」が不可欠です。今回のような学びの場でインプットだけで終わらせず、得た学びをもとにアウトプットすることが重要です。自分自身はアウトプットしっぱなしになりがちなので、その後の「振り返り」も重要だと感じました。IN→OUT→FB→振り返りをしっかり回していきたいです。 経験値をどう活かす? 「過去の経験値」をモノサシとして使うことは必ずしも間違いではありません。ただし、その経験が正しいのか自らを健全に疑い、正しく問いかけることが大切です。また、正しいと判断した経験を用いる際は、なぜその経験が有効なのかを明確に言語化し、他者に説明できるようにする必要があります。 逆算思考での気づきは? 物事を「逆算して考える」ことの大切さについてはよく言われていますが、LIVE授業内の例を通じて改めて気づきを得ることができました。 業務改善に活かす学びは? 現在取り組んでいる営業部へのヒアリング結果を基にした業務改善では、これまで学んだことの全てを活かすことが求められます。この取り組みはそれなりに時間がかかり、巻き込む人の数も多く、骨の折れる内容ですが、学んだことを活かして成果に繋げたいです。 1. イシューを明確にする、問いを立てる。  何を目的にしているのか? ゴールは何か? 目指したい姿や得たい結果は?  どこから手を付けるべきか? 第1領域か、第2領域か?  そこから手を付けるのは正しいのか? チームメンバーの意見は? 2. 分解する。  設定した課題を分解し、ボトルネックを特定する。 3. 改善策を立てる。  ①②を他者に伝える準備として、「視覚化」や「ビジネスライティング」など、学んだテクニックを総動員する。 4. 提案する。 以上の手順で、現在の取り組みを進めていきます。

リーダーシップ・キャリアビジョン入門

学びの軌跡が未来を照らす

本当に大切は何? 偶然、自分が仕事で何を大切にしていきたいのかを自問する機会があり、明文化された項目も違和感なく受け入れることができました。しかし、考えた結果を実際に行動に移すためには、内面と外部からの両方のきっかけが必要であり、相応のエネルギーを要すると感じました。したがって、来たるべき時に備え、平時からじっくり考え認識しておくことが大切だと思います。 キャリア成長の秘訣? また、キャリアをデザインして行動を起こす過程には、その後の生き抜く期間があり、その中で新しい発想や取り組みを身につけるという考えがありました。現在の自分はまさにその段階にあり、日々の業務と本講座での学びから得られるものを、どれだけ自身の成長に繋げられるかを意識していきたいと考えています。 フィードバックは必要? さらに、過去の経験から、能力不足が原因であってもフィードバックなしに業務を任された時の徒労感やモチベーション低下を痛感しました。相手に応じたフィードバックと次の課題設定は、上司と部下双方にとって重要であると実感したため、日常的なコミュニケーションを通して相手との関係性を構築していくことが必要だと感じました。 部下の動かし方は? キャリアアンカーの自覚とキャリアサバイバルの理解は、自身のキャリアはもとより部下のモチベーション管理にも有効であると考えています。チームメンバーのやる気の源泉を把握し、プロジェクトがどのような方向に進むかを予測するための知識やマインドも、アドバイスの一環として備えておきたいと考えています。まずは、日常のコミュニケーションを通じてそれぞれの考えを理解し、業務を通して仕事の進め方や特性を把握。得た情報をどのように活用するか、体系的な理論やそれに沿ったキャリアパスと照らし合わせて自分なりの意見を持つことが大切だと感じました。 リーダーの見る目は? 私は小規模なグループのリーダーとして、メンバー一人ひとりの顔や仕事ぶりを把握しやすい環境にあります。そのため、大規模なプロジェクトのトップを経験された方が、全員を細かく見ることが難しい中でどのような点に注意し、メンバーのマネジメントを行っていたのかをぜひお伺いしたいです。

データ・アナリティクス入門

仮説思考でビジネスを加速するテクニック

仮説の意義をどう捉える? ビジネスにおける仮説は、結論に対する仮の答えや具体的な問題解決のための仮説を含み、過去、現在、未来の視点から分析します。仮説の意義は、次のような点で明確です。まず、検証する姿勢が向上し、その結果として意思決定の精度や説得力が増します。また、関心や問題意識が高まるため、仮説形成には不可欠です。そのほか、スピードアップにつながり、行動の精度も上がります。 仮説の立て方はどう? 仮説を立てる際には、知識の幅を広げ、「耕す」アプローチが重要です。ここでは、なぜ5回も別の観点や時系列、将来予測、類似・反対事象とセットで考えます。また、ラフな仮説を作るために常識を疑い、新たな情報との組み合わせや発想を止めない工夫が役立ちます。極端な仮定の質問や一見ばかばかしい質問、否定形を作ることによって常識をリセットし、価値ある組み合わせを見つけます。さらに、「だから何が言える?」「他に何があるか?」といった継続的な発想が重要です。 仮説検証のポイントは? 仮説の検証においては、必要な検証の程度を見極めた上で、フレームワークの活用と情報収集を行い、分析します。また、仮説の肉付けや方向転換も検討します。仮説思考をリードするリーダーとしては、率先して行動し、質問を投げ、チームで役割を分担することが求められます。さらに、自分の生きがいやパフォーマンスを再確認するリーダーシップも重要です。 購買の実態をどう見る? 購買プロセスとしての5Aカスタマージャーニーでは、認知、訴求、調査、行動、推奨の各ステップを踏みます。購買が必ずしも目標ではなく、SNSなどでの愛着共有や拡散が重要視されます。企業発信よりも、顧客からの発信が心に響くため、その点を重視します。 募集戦略はどう練る? 教育カリキュラムの構築と生徒募集活動の二つの側面で仮説思考と検証を行います。特に生徒募集活動に関しては、5Aカスタマージャーニーを考慮し、広報活動に活かします。知識を「耕す」ためには、ノートにまとめ、実践し結果を記録していくことが大切です。さらにフレームワークを積極的に活用し、チームと共有することや、リーダーとして建設的な質問を投げることが求められます。

クリティカルシンキング入門

「データ分解術で見つけた新たな視点」

情報を分解する重要性は? 情報を分解することによって、情報の解像度が向上します。データを加工するときには、以下の点に注意すると良いです。 まず、与えられた表をそのまま見るのではなく、全体を把握するために自分で欄を増やす工夫をしましょう。さらに、絶対値だけでなく相対値も見ることが重要です(比率に注目する)。数字はグラフにできると、その情報の威力が増します。「眼に仕事をさせる」ことがポイントです。 データの区切り方で何が変わる? データをどのように区切るかによって、解釈が変わってきます。刻み幅によって、分布の見え方が変わるため、どのような分け方が良いかをいくつか試行錯誤する習慣を身につけることが大切です。どのくらいの刻み幅にすれば良いかだけでなく、どのように区切ると意味を持つかを仮説として考えることが重要です。また、分解の際には多様な切り口を考えてみることが必要です。ある切り口では特徴的な傾向が見えなくても、別の切り口では見えることがあるため、複数の切り口で分解してみることが有益です。 まずは「全体」を定義することが重要です。 セミナー結果の詳細分析法は? セミナーや研修の参加者アンケートの結果を分析する際には、表面的な結果だけではなく、"when"、"who"、"how"など、多くの切り口から分解して内訳をしっかり確認します。2つ目、3つ目の傾向がないか意識しながらデータ分析を行うことが求められます。 業務報告はどう改善すべき? 月次の業務報告作成の際には、集計したデータをグラフ化し、表の状態では見えなかった傾向がないかを確認するようにします。データをどこで区切るか、どのように切ると意味を持つ切り方になるかを仮説立てて試してみることが大切です。 今年度のセミナー内容を企画・提案する際には、過去数年分のテーマと参加者アンケート結果を比較して、どのようなテーマがどの属性の参加者に反応が良いのかを分析します。その結果をもとに、今年度の企画案を作成します。また、業務報告を作成する際には、これまで毎月固定の項目の傾向分析・報告だけを行っていましたが、次月以降は新たな切り口での分析を1つ以上追加して報告する予定です。

データ・アナリティクス入門

解決策を見つける真のプロセス学習

問題解決への焦りはなぜ? 何か問題が発生すると、「すぐにどうすればよいか?」と考えてしまうことは、私自身にも心当たりがあります。なぜそのような思考になるのかを考えると、問題を早く解決したいという焦りや、楽に解決したいという心理が影響しているのだと思います。しかし、こうしたアプローチは直感に頼りすぎるため、必ずしも良い結果を生むわけではなく、改めてこのことを認識しました。 まずは、問題を正確に定義することが重要です。そして、「その問題はどこで発生しているのか?」「なぜ起こっているのか?」「どのようにすれば解決できるのか?」というステップを踏むことで、直感的な解決策よりも、より高い確率で適切な解決に繋がることを理解しました。 過去の対策とその反省 過去に、不具合が頻繁に発生するシステムがあり、そのとき私は「すぐにどうすればよいか?」を考え、対策を講じていました。具体的には、エンジニアの責任感を高めるために定期的に1on1を実施し、細部まで仕様を決めて実装の指示を出す、さらに実装とテストを別の担当が行うようにしていました。しかし、それらの対策を実施しても、不具合が改善されることはありませんでした。根本的な原因を特定しないまま対策を講じていたことが理由だと考えます。 問題の本質を捉え、「その問題はどこで発生しているのか?」「なぜ起こっているのか?」「どのようにすれば解決できるのか?」をしっかり分析することが重要です。そうすれば適切な解決策が明らかになり、問題が減らせるかもしれません。 効果的な解決策を学ぶプロセス 今回、より高い確率で適切な解決策を見つける方法を学ぶことができました。学んだステップを実施する際に、漏れや重複があると効果的な対応ができなくなることも認識しました。しかし、「問題を早く解決したい」という焦る気持ちや、「できるだけ楽に解決したい」という心理が強く働くと、再び「すぐにどうすればよいか?」と考えがちになるかもしれません。 最初は、課題解決に時間がかかることもあるかもしれませんが、まずは今回学んだ方法を実践し、継続することで問題解決の精度とスピードを高めていきたいと思います。

「結果 × 過去」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right