データ・アナリティクス入門

プロセスで発見!学びの秘密

原因はどこにある? 問題の原因を探るためには、まずプロセスを細かく分解し、各段階でどこに問題が潜んでいるかを仮説検証する手法が重要です。複数の選択肢を洗い出し、根拠に基づいて適切な判断を下す点にも着目しています。また、A/Bテストを実施する際は、できるだけ条件を整えた上で比較することが求められます。 効果的な分析法は? 具体的なデータ分析の方法としては、まずステップを踏みながら問題の精度を高めるアプローチと、仮説をもとにデータを収集し、より良い解決策に結び付ける手法が組み合わされています。これにより、最適な解決策の検出が可能となります。 分解とテストの極意は? プロセスを分解する方法とA/Bテストのポイントを組み合わせることで、より高度なデータ分析が実現されます。仮説検証と条件を揃えた比較の両面からアプローチすることで、実際の検証結果に基づいた改善が期待されます。 実例から学ぶには? 実際の事例としては、ポイント会員向け利用促進キャンペーンにおいて、若年層の反応を探るために、若者が関心を持つジャンルの店舗を複数選定し、クリエイティブのA/Bテストを実施する計画が挙げられています。過去のキャンペーンデータを活用し、ポイント付与がどの層の購買に影響しているかを機械学習を用いてアプローチする手法も取り入れられています。 次回でどう活かす? 次回のキャンペーンでは、会員データからターゲットとなる層の購買パターンを複数洗い出し、ロイヤルカスタマー化につながる経路を明らかにすることが目標です。洗い出されたカスタマージャーニーに基づき見込み客にアプローチし、その反応をPDCAサイクルで検証・改善していく計画です。 全体をどう見る? 全体として、プロセスの分解とA/Bテストの方法を的確に押さえたアプローチが示されており、仮説検証を実際のデータに基づいて試すことで理解が一層深まる内容になっています。今回学んだ内容を次のプロジェクトでどのように活かせるか、引き続き考えていきましょう。

デザイン思考入門

共感と疑問が導く学びの道

手順はどう大切? デザイン思考では、手順をきちんと踏むことの重要性を実感しました。デザインプロセスを分解し、グループワークを通じて多様な意見に共感する体験が非常に印象的でした。共感とは、必ずしも自分がポジティブに捉えなければ伝わらないということに気づき、考え方自体を受け入れるための大切な要素だと感じました。 顧客行動の本質は? また、顧客の行動に注目することで、本質的な課題の糸口を見出すことができると学びました。現象面だけに目を向けるのではなく、これまでの経験からくる先入観を捨て、顧客を深く理解しようとする姿勢が、デザイナーとしては非常に重要だと改めて感じました。 言語化で何が変わる? 学びのコツとして、言語化、教訓化、自分化のプロセスがあることに気づきました。感じたことを言葉にすることで思考が整理され、ケースごとの客観的な分析を通じて新たな知見が得られると理解しています。従来は漠然と状況を把握し、過去の知見に頼っていた部分が、具体的な分析を行うことによってより豊かな学びへとつながると考えます。 WHYを掘り下げる? 企業支援の場面では、クライアントに自ら選択できる情報や分析結果を提供するだけでなく、お客様の行動を観察することに加え、なぜそのような考えに至ったのかという「WHY」を繰り返し問いかける姿勢が求められると感じました。例えば、商品企画の段階では、技術視点だけでなく、お客様が何に困っているのか、なぜそのような状況になったのかを徹底的に掘り下げることで、議論や仮説にとどまらず、お客様の実情を実感していただくことが重要だと思います。 どう選択肢を広げる? さらに、企業支援の現場で「WHY」を追求する思考を実践しながら、選択肢を広げるための説明ができるよう努めたいと考えています。自身でも、適切な質問を工夫して「WHY」を促進するだけでなく、自分のバイアスに気を留め、相手の意見に対しても好奇心を持って傾聴する姿勢を大切にしていきたいと思います。

戦略思考入門

リソースを集中活用するススメ

リソース配分は正しい? 限られたリソースをどのように効果的に活用するかを考えることの重要性を学びました。すべての顧客に均等にリソースを割くのは非効率であるため、時間当たりの利益貢献度を基に優先順位をつける必要があります。このアプローチにより、成果が期待できない部分のリソースを大胆に削り、重要な顧客に集中することで、組織全体のパフォーマンスを向上させる戦略が明らかになりました。 ROIで判断する? また、ROI(投資対効果)という視点を活かして意思決定を行うことが効果的だと気づきました。各顧客の売上や利益率、時間当たりの利益貢献度を分析し、ROIが高い顧客にリソースを集中させることが望ましいです。さらに、顧客特性に応じて最適なアプローチを取ることで、ROIをさらに向上させることも可能です。たとえば、長期関係のある顧客には信頼を高めるサポートを、新規顧客には競合と差別化する対応が求められます。 業務見直しは必要? 日常業務においても、昔からの慣習に流されずに、その業務が本当に必要なのかを常に問い直すことが大切です。FAXや印鑑など、過去の流れで続けている作業が本当に不可欠か見直す必要があります。また、不要な業務は思い切って削減し、削減で生まれた余裕を付加価値の高い業務に振り分けます。 自動化は進んでる? 自動化についても常に考慮し、人手で行う業務をRPAや自動化ツールで代替できるかを検討します。その結果、実施可能な自動化プロジェクトをリスト化し、効果的な実行を目指します。 業務目的は何? さらに、業務の目的を定期的に問い直すことも重要です。「この業務は何のためにあるのか?」を見据え、目的に合致していない業務がないか確認し続けることが、より効率的な働き方につながると考えます。効率化の意識をチーム全体で共有し、改善案や気づきを他のメンバーと積極的に共有することで、全体としての効率化を支える体制を築いていきます。

クリティカルシンキング入門

データの切り口を見直して発見した新たな視点

切り口を考える意義とは? 分解する前に切り口を考えることの重要性を再認識しました。切り口を考える際には、仮説を持って臨むことが大切だということを学びました。 データ分析に仮説は必要? 今回の講義の演習には、「切り口を考える」場面が多く含まれていました。これはデータ分析を行う際、多様な視点が必要であることを示しています。そして、「切り口を考える」ためには、現時点での仮説を持つことが重要だと感じました。過去にデータを分析しようとした経験があり、当初はデータの傾向を捉えようとしていましたが、進捗が思わしくありませんでした。しかし、過去の経験から推測を立て、それに基づいてデータを精査すると傾向が見えてきました。この経験は、今回学んだ内容そのものであると改めて感じました。 正誤判断で新たな発見を? 仮説を持ち、切り口を考えてデータを見ることで、自分の仮説の正誤を判断するだけでなく、仮説が誤っていた場合でも、その仮説と実際の結果を比較検討できます。これにより、新たな解釈や仮説が生まれ、データに対する理解が深まるのです。 業務への具体的な応用は? このアプローチは、ソフトウェアの期限切れ対応のコスト分析や障害発生時のデータ分析など、直接的な業務にも応用できます。また、プロジェクト立ち上げ時には、コスト評価や対応内容の妥当性を説明する資料の作成が必要ですが、その際には票だけでなくグラフも加えて分かりやすくしたいと考えています。 仮説を立てることの効果とは? これまで、コスト分析というと、ただ数字をマトリックスやグラフにまとめるだけでしたが、それは単なる事実の整理に過ぎませんでした。今後はデータを整理・解析する前に目的を明確にし、その目的と過去の経験から仮説を立て、その仮説に応じた切り口でデータを整理していきたいと考えています。これにより、わかりやすい資料作成だけでなく、コストダウンの端緒を見つけることができるかもしれません。

戦略思考入門

戦略で学ぶ!時間と戦うビジネス学

トレードオフとは何か? 戦略における選択や「捨てる」というプロセスを実践する中で、トレードオフの概念について学びました。これは、何かを追求する際に別の何かを犠牲にしなければならないという理論です。この考え方は、ビジネスだけでなく日常生活でも無意識のうちに実践していることで、とても身近に感じられました。 優先順位の付け方の重要性 ビジネスの場面では、特に時間という限られた資源に直面することが多く、必然的に何かを捨てる選択を迫られます。今回、優先順位の付け方を実践的に学ぶことで、これまで直感に頼っていた判断に客観的な視点を加えることができるようになりました。その結果、判断軸がぶれることなく、問題解決にスピード感を持って取り組むことができると感じました。 スタック・イン・ザ・ミドルのリスク また、コスト・リーダーシップ戦略と差別化戦略というトレードオフの関係にある要素を両立しようとすると、「スタック・イン・ザ・ミドル」に陥るリスクがあることも学びました。 効果的なコンテンツ企画とは? 今後、国際戦略の一環としてイン・アウトバウンドを促進するために、新たなコンテンツ企画を進める予定です。その際、効果的な戦略を考えるとともに、工数と集客効果のバランスにも配慮したいと思います。具体的には、インタビュー企画を検討していますが、広報活動においてはあまり凝った制作をせず、限られた時間内で魅力的なコンテンツを制作することを心掛けています。 媒体選定と効果検証のポイント まずは、どの媒体にコンテンツを掲載するのかを決め、その効率性を考慮します。過去の閲覧数やフォロワー数を参考に、より良い結果を得られる媒体に集中して時間を使い、その後、仮説が正しかったか検証します。そして、予期しない結果が得られた場合には、次回のコンテンツ企画に向けて修正案を練る予定です。

クリティカルシンキング入門

疑いが拓く学びの扉

本質をどう捉える? 本質的な課題を捉えるためには、まず目的を明確にすることが大切だと感じました。何のために、何を問うのか、その根底にある本質に迫ろうとする中で、当たり前と思い込んでいる事柄に疑いの視線を向けると、より本質に近づけるのではないかと思います。また、その問い方は単純な二者択一に終始せず、柔軟な姿勢を保つことが重要です。問いは一度限りではなく、何度も継続して行うべきで、その際、視点が偏らないよう多角的に分析し、具体的な実践を心がける必要があります。統計的なデータやその分析手法も、このプロセスにおいて有効なツールとなるでしょう。 本当の課題は何? 私はIT業界で働いており、この考え方は特に要件定義工程で役立つと感じています。本当にその機能が必要なのか、ユーザの真の課題は何か、また解決策がユーザ側の視点から見て適切かどうか、といった検証が必要な場面です。さらに、バグや障害対応においても、なぜ問題が発生したのか、どのタイミングで混入したのか、過去の事例と比較することで原因を追求する際に、このアプローチは有用です。開発プロセスの改善やリスク管理の分野でも、「今までのやり方が正しいのか」という疑念を持ち続け、常に振り返りながら改善を図る上で効果的だと考えます。 問いの立て方は? 「本質的な課題を捉える問いの立て方を身につける」ための行動計画としては、まずは疑いながら考える習慣をつけることから始めます。仮説を立て疑うことを日常に取り入れ、必要な理論や手法を書籍や研修を通して体系的に学びます。その後、実際の会議や小さなチームミーティングで本質的な問いを繰り返し投げかけ、意識を高めることを目指します。実践後は振り返りを行い、その結果を次回に活かすというサイクルを繰り返すことで、確実に身につけていけると考えています。

データ・アナリティクス入門

仮説検証で未来を切り拓く挑戦

仮説の再考は? 仮説の分類について考える際、私は従来「問題解決を過去から見る」観点に主眼を置いていました。しかし、仮説全体を見直すうちに、「結論や未来を予測し、仮定の上、検証する」点には十分踏み込んでいなかったことに気づきました。 視野を広げるとどうなる? そこで、仮説全体を見る際には、結論や未来の予測を含む多角的な視点を持ち、バイアスにならないよう視野を広げて考えることが重要だと感じました。結論、つまりゴールから出発しデータを集めて検証していくものの、その過程で手戻りが発生し、結果として何度もデータを再確認することがあります。こうした経験から「方向性を見いだせて初めて動き出せる」という体験を増やしてみたいと思いました。時間効率を意識することで、普段の行動に留まりがちになりますが、時にはうまくいかないことを試みる勇気も大切だと考えています。うまくいかないことから得られる手戻りや試行錯誤の過程は、生産効率を低下させる一方で、自己を納得させるための貴重な材料にもなります。 根拠に基づく行動は? 行動計画としては、「仮説を立てる」にあたって、数字に基づく根拠やフェルミ推定を活用し、意思決定において経験則に頼らず新しい立ち位置を見つけることを目指します。また、これまで行ってきたお客様の離脱予測を、仮説をもとに見直し、データ収集を通じて有効な改善策を模索していきたいと考えています。 データの真実は何か? さらに、KPI関連指標については、チーム単体での目標達成がデータ分析を経ないままであったことを反省し、達成の要因を深掘りすることで、本当に正しい事業活動を行えているかを検証します。他チームや類似業務との比較を通じて、データ取得し仮説を立て分析を行うことで、一層の改善を図っていくことを目指しています。

データ・アナリティクス入門

データ分析で失敗しないための初めの一歩

データ分析の初め方とは? データ分析を始める際、最初に注意すべき点は、いきなり「How」に飛びつくのではなく、まず原因を特定することが重要です。また、何を理想的な状態とし、そのギャップをどう見なすか、関係者との合意を得ておくことが肝心です。 MECEの概念とその活用法 MECE(Mutually Exclusive, Collectively Exhaustive)の概念については、有意義な切り口で切り分けることが大切ですが、乱用には注意が必要です。 データ分析の精度を高めるには? データ整理とデータ分析の違いや、分析の精度と説得力の関係については、明確な理解が求められます。例えば、データ分析がどのケースにより合致するかも考慮すべきです。現状から改善を目指すケース、あるいは未来に向けた戦略的なケース、それぞれに適したアプローチがあります。また、需要予測と異常検知といった異なるケースでの適用の違いも理解しておくと役立ちます。 ケースAの分析方法は? ケースAでは、例えばWEBサイトからの問い合わせデータや営業がSFAに入力した案件データを分析することが考えられます。現状の問い合わせ数に基づき、来期の目標やポテンシャルを過去のデータから算出するために変数分解を行います。 ケースBでの説得力あるストーリーの構築法 一方、ケースBでは、例えばグループウェアの切り替えに際し、役員を説得するためのデータ準備が求められます。説得力のあるストーリーを構築するために、現実的に入手可能なデータを調べることが重要となります。 具体的な結果を得るために これらのポイントを踏まえ、データ分析の取り組みを進めることで、より具体的で説得力のある結果を得ることができます。

クリティカルシンキング入門

データ分析で得た新しい視点を育む旅

多角的な分析って? 数字やデータの分析においては、多様な視点での切り口が重要です。どのように分けるべきか迷うこともあるかもしれませんが、迷うよりもまずは様々な方法で分けて可視化してみることが大切です。特徴が見えない場合もありますが、それはその分け方が適していないと学ぶ機会です。特に、MECE(漏れなくダブりなく)を意識して切り分けることで、より正確な分析が可能になります。まず全体像を把握し、MECEを意識した分解を行うことが効果的です。 次回の展開はどう? 現在はコンテンツ開発の時期ではないため、データ分析の機会は少ないですが、次回のコンテンツ開発時には過去のアンケート結果を様々な角度からMECEを意識して可視化することで、新しいコンテンツ開発に役立てたいと思います。また、別の企画での社内研修を考えており、参加者のアンケート結果を活用して次年度の研修内容をどのように改善するかを考える際にこの方法を活用したいと考えています。さらに、アンケート作成時に何を質問すべきか考える際にも役立つと感じています。 可視化の工夫は? 具体的には、以下の方法を試みようと思います。まず、様々なデータを見つけられる限りの切り口で分けて可視化すること。そして、データをエクセルに取り込み、パーセンテージ表示やグラフ化を行い可視化して確認する習慣を身につけることです。さらに、常にMECEを意識し、モレやダブリがないか確認しながら進めることが必要です。 振り返りの学びは? 過去に分析したアンケートデータをもう一度見直し、得た知識をもとに新たな視点で見てみることも重要です。こうした取り組みを通じて、データの見え方の違いを体感し、今後の分析に活かしていくつもりです。

リーダーシップ・キャリアビジョン入門

キャリア・アンカー再挑戦と内省の重要性

キャリア・アンカーとは何か? 過去に学ぶ機会があり、メンバーに対して自分が8つのキャリア・アンカーのどれに当てはまると思うかを尋ねたことがあります。結果、自分も含めて、1つだけ当てはまるという感じではありませんでしたが、どれにも当てはまらないというわけでもありませんでした。今回の学びでは、自己チェックとインタビューのステップを学んだため、再度チャレンジしてみたいと思います。 キャリア・サバイバルの現状とは? キャリアの分析ではなく仕事の分析です。仕事の棚卸、環境変化の認識、仕事の見直しをどう組み込むか、内側から自分を眺め自分の仕事を貫く価値観を振り返ること、そして今後の方向性を考えることが求められます。これが、いま正にキャリアに悩んでいる自分自身の状況と重なります。 キャリアの悩みから新たな学びへ キャリアに関する悩みは誰しもが抱えるものであり、転職しても新たな悩みが出てくるというメッセージには救われました。私の現状はまさにサバイバルの期間です。 自分の内面と向き合う時間の大切さ 積極的に自分の力を養う期間であると捉え、辛い中でも生き抜き学びの期間であると、できる限り前向きに考えていきたいです。まずは自分の内面に向き合い、自分のキャリア・アンカーは何か、どうありたいのか、自分は何者かを認識するところから始めたいと思います。 日々の目の前の仕事に忙殺されないように、まずは落ち着く時間と余裕を持ち、自分の内面に向き合う時間を作ります。メンバーがキャリアに向き合っている私を見て、部下がサポートしたいと思ってくれるような、部下が仕事を好きになり、部下自身もキャリアを考えられるような環境を作りたいと考えています。

マーケティング入門

エンタメとマーケで見る心の動き

自己紹介で何を感じた? 「自己紹介」のエクササイズで、相手の自己紹介を聞いた際に自分の気持ちを意識するように指示されたことが印象に残っています。確かにこれは、商品やサービスを提供された際に顧客がどう受け止めるかという心の動きと全く同じです。個々のニーズにもよるでしょうが、私は経歴などの客観的なデータよりも、相手の話し方や温度感、表情に引き込まれる傾向があります。一方で、自分では自己紹介を比較的上手くできたと感じていましたが、実は何の根拠もなくそう思っていたことに気付き、フィードバックが重要であることを悟りました。相手がどのように受け止めたのかを把握することは、マーケティングの基本かもしれません。 コンテンツ反応を読み解く? 自分の仕事に当てはめて考えると、提供したエンタメコンテンツがどのように受け止められているのか、その視聴時間数や視聴態度としてのフィードバックを読み解く視点が重要だと感じました。視点によって、浮き彫りになるフィードバックもあれば、埋もれてしまうものもあるでしょう。何を基準に解釈するかは感性も関わるので、感性の磨き方も学びたいと思います。 データで戦略を立てる? 新しい職種へのチャレンジとして、まずはデータの全体像を把握することが必要です。調査方法や測定手法、マトリックスを理解し、何を成功とするのか、その基準を把握することに加え、なぜそれが成功とされるのかを考えます。また、過去の事例において、仮説と結果の差分はどの程度だったのかを知り、戦略を立てる際にどのようにデータを活用するのかを学びます。データがサポートしない新しいことにチャレンジする際は、どのように戦略を立てるのかを考えることが必要です。

クリティカルシンキング入門

データ分解で見つける新しい視点

データ分解の必要性は? 今週の学習では以下の点について考察しました。まず、データを分解する際には、さまざまな視点からの切り口を持っておくことが重要です。データの分解方法や細かくするやり方によって、データの見方は大きく変わり、傾向や仮説が立てやすくなります。また、多面的な視点でデータを分解することも必要です。MECE(漏れなく、ダブりなく)を用いて検証することは基本ですが、さまざまな角度から分析することの重要性を感じました。さらに、データの可視化も重要であり、グラフなどを使うことで傾向の見方が大きく変わるため、積極的に用いていきたいと考えています。 業務へどう活かす? これを自分の業務に当てはめると、以下のようになります。データを単に表にまとめるだけでなく、詳細に分解したりグラフ化することで、関連性の洗い出しに役立てられると考えます。具体的には、開発中の製品の物性データ解析を行い、改善に必要な影響因子を洗い出したり、売上と在庫のデータ推移を国やユーザーごとに解析し、仮説立てに活用したりします。また、文章データを整理し、プロセス解析と分類分けによる分析を行います。 分析に多角視点は? データ分析や分解については、自分だけで行うのではなく、他の人にも確認をお願いし、異なる視点や着眼点を参考にして分解のバリエーションを増やすよう心がけます。データを取得する際も、従来の方法にとらわれず、「本当に必要なデータなのか」という視点を意識して行います。過去のデータとの関連性も考慮に入れ、有用なデータ取得を目指します。結果に対しては、「本当か?」といった問いを繰り返し、別の視点での傾向の可能性を確認することも重要です。

「結果 × 過去」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right