戦略思考入門

営業戦略の新しい道筋を探る

顧客対応の優先順位はどう決める? 利益率やタイムパフォーマンス、そして将来の顧客成長率などの定量的なデータを基に、顧客対応の優先順位を決定していくプロセスについて理解が深まりました。一方で、これまでの担当者との人間関係といった主観的な要因を考慮に入れて「捨てる戦略」を採用することは、日本の商慣習の中では難しいと感じています。 文化的要因はどう分析する? 総評として、利益率やタイムパフォーマンスの理解が進んでいることは素晴らしい成果です。文化的な違いによる商習慣の難しさも重要な視点です。文化的要因をさらに具体的に分析することで、理解が一層深まるでしょう。 営業戦略に必要な仕組みは? 今回の学びから、営業戦略を練る際には、自社の営業先ターゲットのタイムパフォーマンスをしっかり把握し、売上の最大化につながる仕組みを構築する必要があります。具体的には、余分な人的リソースを投入すべきかどうかを営業戦略にしっかりと反映させ、判断できる体制を整えることです。 主観と客観のバランスは? また、営業管理ツールのダッシュボード機能を活用し、顧客別の売上や構成をチームで分析することが重要です。この際、客観的な判断基準だけでなく、これまでの顧客との関係性などの主観的な情報も加味した判断基準を設けることで、営業戦略の立案に役立てることができます。 捨てる戦略に影響する要因は? さらに思考を深めるために、日本と他国の商習慣の違いがどのように捨てる戦略に影響を与えるのかを具体的に考えてみてください。また、顧客の優先順位を決定する際に、主観的な要因と定量的な要因をどのようにバランスさせるかについても考察を深めてみてください。 洞察を実践へどうつなげる? 最後に、今回の洞察を基に具体的な状況分析を行い、それを実践につなげられる方法を模索してみてください。引き続き、頑張ってください!

リーダーシップ・キャリアビジョン入門

リーダーシップでチームを一つにする方法

リーダーシップの本質は? リーダーシップとは、フォロワーが自然とついてくる状態であり、誰にでも身につけ、発揮できるものです。私はなんとなくリーダーシップのイメージを持っていましたが、学んでみることで新たな発見がありました。その要素として、「行動 = 能力 × 意識」があり、行動だけが他人から見える部分です。だからこそ、後ろ姿で示すことが重要だと感じました。言語化が不足していると以前から感じていましたが、リーダーシップを発揮する上でも言語化が必要です。スキルアップのため、本から学び、早期に実践したいと思います。 プロジェクトの意義は? 私は現在、フラットな環境での社内プロジェクトに参加しています。このプロジェクトでは、個々の強みを活かし、参加する意義を感じてもらうことでモチベーションを高め、年度末には達成感を共有することが課題です。業務外の有志の活動であるため、モチベーションやかけられる時間は人それぞれです。参加するだけなら簡単ですが、私は中途半端が嫌いです。どうせ参加するなら楽しく意義のある時間を過ごしたいという考えが勝りました。私はまず、自ら行動で示し、リーダーシップを発揮して『やり切った』と充実した気持ちで3月を迎えたいと考えています。 信頼関係はどう築く? 私自身が主体的にプロジェクトに参画し、これまで以上に言語化を意識して伝えていきます。他のメンバーとは普段は別々の部署のため、この活動でどう信頼関係を築くかが課題です。信頼関係はすべての基盤であり、私自身が働きかけを行う必要があります。また、メンバー間でも信頼関係を築き、「チームワーク」と呼べる状態にすることが目標です。メンバーの中には個性が強い人もいて、その言動が他のメンバーのモチベーションを下げることもあります。そのような状況でどのようにリーダーシップを発揮するかも、私自身に問われていると感じています。

データ・アナリティクス入門

理想を描き、ギャップを埋める

問題解決の考え方は? 『問題解決』を考える際は、まず4つのステップ(What・Where・Why・How)に沿って整理します。Whatは問題を明確化し、問題解決には「正しい状態に戻すもの」と「ありたい姿に到達するもの」があると考えます。どちらの場合も、理想の状態と現状とのギャップを定量的に捉え、何をあるべき姿とするのか関係者間で合意することが重要です。 ロジックで何が分かる? また、ロジックツリーは、KPIロジックツリー作成時のみならず、物事を分類して考える際にも活用できます。例えばミュージックスクールの問題解決設問では、B校の収支見積もりから「生徒数を増やすには広告宣伝費が必要で、そこは大きく支出しても良いのでは」といった意見や、講師外の人件費について「A校と兼ねられる業務は1つにしては?」といった考察が見られました。こうした議論を通じ、問題を考える際の順序や段階ごとの整理方法に対する興味が湧いたという点が印象的です。 ギャップの定量化は? 協議の場では、あるべき・ありたい姿を明確に描き、そのギャップを定量化することが重要です。KGI設定の際にはMECE発想を用いて実効性のあるKPIを設定し、定期的に現状との乖離を把握する必要があります。プロモーション施策やイベント出展の際も、まずありたい姿を示すことを基本方針とするべきです。 協議で一致できる? さらに、打ち合わせの冒頭で協議の目線を合わせ、どちらのタイプのギャップを埋めるのか、参加者全員で共通認識を持つことが大切です。従来は「どうしたいか」と上から問いかけても十分な回答が得られなかったが、これからは自らありたい姿を描き、そのギャップと解決策を自ら提案していく必要があります。多方面で考えすぎて結論に至らないこともあるため、ロジックツリーを活用して見える化しながらPDCAサイクルを回すことが推奨されます。

リーダーシップ・キャリアビジョン入門

行動で信頼を得るリーダーの形

どう行動で信頼得る? リーダーシップを発揮するには、単に地位を持つだけではなく、実際の行動を通じて周囲から信頼を得ることが不可欠です。リーダーであるためにはフォロワーが必要であり、その信頼関係は自らの行動(能力×意識)によって築かれると改めて感じました。また、単なる上司指示ではなく、自身の説得力や行動力によってメンバーを動かすことこそが真のリーダーシップであると捉えています。 なぜリーダーを目指す? また、目指すリーダー像についても、多くのお手本となるリーダーたちを見て、自分がなぜリーダーになりたいのか、そしてどのようなリーダーシップを発揮したいのかを深く考えるきっかけとなりました。より多くの人々を巻き込み、ダイナミックに仕事を進めるためには、自分自身の考えや意志をしっかりと持つことの大切さを感じています。 どう伝えるのが良い? さらに、チーム方針を伝える際には、なぜその施策が必要なのか、我々がどこに向かっているのか、そしてその先にある目標について、自分の言葉で分かりやすく伝える努力が求められていると実感しました。会社の公式コメントに頼らず、自らの言葉で説明することが信頼を得る上で重要であると考えています。 育成で何を見直す? 育成の面では、これまで相手の負荷を過度に心配して要求を引き下げていた部分があったと反省しています。たとえ高い壁があっても、相手の成長を促すためにあるべき姿を示し、励ましながら高い山に登らせる姿勢がリーダーには求められると感じました。 伝え方の改善は? 最後に、大人数への発信においては、同じ言葉でも聴き手のキャリアや背景によって受け止め方が異なるため、どの層に向けてどのように伝えるか、また部門の専門知識が十分でない中でどのように信頼を勝ち取るかといった課題について、今後の経験から学び、改善を図っていく必要があると考えています。

データ・アナリティクス入門

条件を揃えて見える学びの真実

正しい比較はどうする? 「Apple to Apple」という考え方が印象に残っています。同じ条件に揃えて比較しなければ、意味がなく、データを正しく読み解くために非常に重要だと感じました。頭では理解していても、経験やクリティカルシンキングが不足していると、ついつい情報を鵜呑みにしてしまう危険性があります。 企画と集客の関係は? 私は学生向けのオンラインイベントの企画と集客を担当しています。まず、企画と集客は表裏一体であり、学生の行動分析が重要です。具体的には、どの時期にどのような申込行動があるのか、参加後にはどのような行動に繋がっているのかを解析し、その結果をもとに企画の対象、開催時期、内容を決定しています。 認知広げる秘策は? さらに、集客においては「いつ、何を、どのように」告知して認知を広げ、申込を促し、開催前に離脱を防ぐ対策まで考えなければなりません。状況が常に変化する中で、申込状況をリアルタイムに把握し、必要な打ち手の変更を迅速に行うことが求められます。企画の効果が集客に影響するため、両者は密接に連携させる必要があります。 データ整備は進んでる? 現状では、まずデータの整備が最優先事項です。折り返し地点まで進めていますが、依然として地道な作業が続いています。正直なところ、「会社が整えておくべきだ」という愚痴も出るほどですが、しっかりと整備を進めなければ本質的な分析はできません。今後も引き続き取り組んでいきます。 管理方法はどうなってる? また、データの記録や管理、分析を効果的に行うためには、エクセルフォーマットの整備も欠かせません。どのようにすれば見やすく、管理しやすく、分析しやすいかを、部署メンバーと意見を合わせながら調整を進めています。この作業は地道ですが、本質的なデータ分析の議論に繋がっているため、継続して進めていく覚悟です。

データ・アナリティクス入門

データが照らす学びの軌跡

意思決定はどのように? ジレンマに直面した際の意思決定プロセスについて、具体的な手順を学びました。仮説を立て、その仮説に基づいてデータを収集し、最終的な結論につなげる基本的なプロセスが身についてきたと実感しています。特に、ある教育機関で見られた事例―忙しさから採用候補者の面接時間が確保できない一方で、面接を行わなければ生徒からの不満が蓄積し、経営に悪影響を及ぼす可能性がある―は、自分がスケジュールを詰め込みすぎている点に気づかされる貴重な経験となりました。講義の冒頭で「データ分析においては、何を目的とするかが極めて重要である」という話を聞いて、改めてその本質に立ち返る機会となりました。 人口減少策をどう見る? 人口減少対策においては、何をもって効果とするか判断するのが難しく、一見、あらゆる施策を試すような印象を受けますが、実際にはリソースが限られているため、何を課題として捉えるかが大切です。今一度、どのような仮説を立て、どんな事業を展開し、結果をどのように検証するかという一連のプロセスについて考え直す必要があると感じています。最近、ある地域の各自治体が実施する政策の一部を説明変数として、UIJターンに影響を与える要因を分析した論文に触れる機会がありました。施策分野ごとに縦割りで考えがちな現状に対して、異なる組み合わせが流入人口に与える影響を示すデータに、非常に新たな視点を得ることができました。 データ調査の下準備は? 自力で高度な分析を行うには限界があるものの、まずは地域内の市町村が実施している政策を類型化し、その一覧を作成するなど、データによる調査の下準備が可能だと考えています。具体的には、関係人口や交流人口を創出する施策、雇用創出に関する施策、住居に関する施策、さらに子どもや子育て支援に関する施策について整理し、評価データをまとめていく予定です。

戦略思考入門

やめる勇気が未来を変える

日常に戦略思考はどう? 戦略的思考のフレームワークは、ビジネスだけでなく日常生活にも大いに役立ちます。まず自分自身や組織の使命や目標を明確にし、目指すべき方向性やその理由を検討することが重要です。 強みと弱みはどう? そのためには、自身や組織の強みと弱みをしっかりと把握し、政治、経済、社会、技術といった外部環境の変化を十分に考慮する必要があります。こうした分析は、競合との差別化を図るための効果的な戦略の構築に大きく貢献します。 何をやめる勇気は? また、戦略的思考においては「何をしないか」「何をやめるか」という決断も非常に重要です。多くの場合、全てを実現しようとするあまり、不要な取り組みを続けがちですが、あえて「ノー」と言えるかどうかが、成功へのカギとなります。 合意はどう進む? 私自身、現在の職務でマーケット分析や戦略計画を行う際に、このフレームワークの有用性を実感しています。全体を俯瞰し、外部環境や関係者の視点を広く取り入れることで、より客観的な判断が可能になりました。しかし、一方で複数の関係者の合意を得ることは簡単ではなく、特に「どの取り組みを見送るか」という決断には大きな抵抗が伴います。 実行戦略は何が鍵? それでも、差別化戦略を成功させるためには、実施する内容だけでなく、あえて取り組まない内容を明確にすることが不可欠です。このような中で、優れたリーダーシップと変革を推進するマネジメントスキルが求められます。 チームの未来はどう? 製品やサービスの廃止に対する抵抗感を乗り越えるためには、戦略計画の基本に立ち返り、チームメンバーとともに現状と目標を明確にするセッションが大いに役立ちます。長期的な視点と、何を捨てるべきかという明確な戦略を組み合わせることで、メンバーは全体像を捉え、将来の目標に集中しやすくなると感じています。

データ・アナリティクス入門

STEP活用で見える問題解決の極意

分析と課題の関係は? 今週の学びでは、これまでの講義全体を振り返る中で、改めて以下の点の重要性に気づきました。まず、分析とは比較を通じて違いを明確にする作業であること。そして、問題解決には「What(何が問題か)」、「Where(どこに問題があるか)」、「Why(なぜ問題が起きたのか)」、「How(どう対応するか)」という4つのSTEPがあり、この順に検証することで、チーム内で適切な意思決定や対応策の精度向上につながるということです。また、仮説思考の重要性も学びました。一方で、仮説にとらわれず現状のデータから何が分かるのかを整理する必要性も感じました。 目的は本当に何? これまでデータ分析=分かりやすく加工する技術(プレゼンテーション資料や表計算ソフトのスキル)と捉えがちでした。しかし、本講座を通して、何よりも分析する「目的」が重要であり、見せ方や手法だけでなく本質に気づくことができました。 データから何が見える? 現業では直接データを加工する機会は少ないものの、提示されたデータから「なぜこの課題意識を持ち、どのように分析したのか」という分析者の視点を意識して読み解くことが求められています。また、クリエイティブ業務においては、どうしても「HOW」から入りがちなチームメンバーに対し、この問題解決のSTEPを活用して共通の目線を持つことが有効に感じられます。 仮説も大切なの? さらに、新規事業の立案時にも、従来のフレームワークに加えて仮説思考を取り入れ、「データを分け、整理し、比較する」という基本事項を怠らず進めていく重要性を実感しました。 実践はどう進める? 実際に問題解決のSTEPを業務で取り入れ、チーム内での情報共有や課題の整理を通じて、よりシャープな打ち手(How)を見出すための一助になっていると感じています。

クリティカルシンキング入門

踏み込むデータ、広がる発見の世界

データと本気で向き合う? データの用い方や見せ方について再確認でき、また新たな発見を得ることができました。従来は説得力や妥当性を高めるためにデータを利用してきましたが、今回の講習では「データとの向き合い方」自体に踏み込むことで、さらに可能性が広がると感じました。踏み込むというのは、データを分解・分析し新たな発見につなげることを意味します。これまでは、一定の目的が達成できればそれ以上深堀りしなかった自分を反省し、今後は偏りを減らしてより深く分析することで、発見の数や他者への探求の深さ、そして説得力の向上につなげたいと思います。単に表面的な理解で終わるのではなく、データから何が見えているのかを追求していく姿勢が大切だと感じました。 業務で分析は活きる? また、業務においては分類・分解・分析が多くの場面で役立つと実感しました。たとえば、目標設定では、市況や需要予測に基づいてシェアや販売量を設定し、その根拠となるデータや分析結果をもとに説明することで、計画の信頼性が高まります。実施計画においては、マーケティング戦略や営業活動の手段、ターゲット、期待できる効果、効果が現れるまでの時間などを細かく整理し、実行者、評価者、受益者それぞれとの連携を明確にすることが可能です。さらに、効果測定では、シェアや販売量・金額と実施計画との因果関係を明確にして、次のアクションの策定や判断につなげることができます。 分析手法を検討する? こうした業務プロセス全般において、データの分類・分解・分析は有効な手法です。具体的には、説明が必要な場面で、利用可能なデータや参考になる情報がないかを常に意識し、検討することが大切です。たとえば需要予測においては、単に過去の推移を見るだけでなく、季節要因や提供者ごとの特徴も踏まえて分析することで、より実効性のある判断が下せると感じました。

戦略思考入門

選択と集中で業務改革を実現!

心情と冷静な分析のトレードオフとは? 現実では、付き合いの長さや関係性、過去の経緯など多くの要素が絡み合い、心情的に優先度を決めていることがあると気づきました。冷静に分析することで、本当に優先度が高いかどうかを判断していく必要があると感じました。 なぜ取捨選択が重要なのか? 1. 捨てることが顧客の利便性を増す場合がある。 2. 昔からの惰性に流されず、常に新しい意見を取り入れることが重要です。トラブルや環境悪化が改善につながることもあります。 3. 餅は餅屋に任せるべきで、垂直統合のデメリットがメリットを上回ることがあります。思い切って専門家に任せる方が良いです。 新メンバーの意見をどう活かす? これらの選択を実践するうえで、3つの観点は当たり前だと考えがちですが、実行に移すのは難しいことがあります。新メンバーの指摘から多くの気づきを得ることができるため、経験豊富なメンバーだけでなく、新しいメンバーの意見を取り入れる機会を増やしたいと考えています。 業務分担と体制はどう見直す? 具体的な事例や惰性から抜け出す重要性についての気づきがよく表現されています。また、新メンバーの意見を積極的に取り入れる柔軟性も素晴らしいと感じます。思考のプロセスや場面をもう少し詳細に描くことで、更なる改善が期待できるでしょう。 正に今、次年度以降の業務分担や体制を整理しており、惰性で継続している業務がないか見直しています。新しいメンバーの意見は的確で、「選択」の考え方を実感しています。社員が担う業務と業務委託する範囲を明確にし、二重のコストや負担を避けるために整理を進めています。組織を統合し、スケールメリットを打ち出すために一時的に業務が複雑になっていますが、優先順位をつけ、継続すべき業務と見直すべき業務を分類していきたいと考えています。

クリティカルシンキング入門

データ分析のコツで業務効率アップを実感

数字分析で見える傾向は? 数字をいくつかのパターンでグラフ化し比較すると、傾向や特徴がつかめることがわかりました。知りたい情報に対して、意図的に複数の分析軸が必要であることも理解しました。特に一番の気づきは、一つの分析結果だけを見てすぐに結論を出すのは危険だということです。急ぐあまりに、ついやってしまいがちですので気を付けたいと思います。 分解時の注意ポイントは? また、切り口を考える際のポイントとして、全体を定義したうえでモレなくダブりなく分解していくことが重要だと感じました。意識してチェックしていないと、歪みが出ることに気付けません。 課題の本質をどう見抜く? 自分の業務では、お客様アンケートなどを整理する際の切り口を設定するときに使えると思いました。さらに、原因不明な状態で課題改善を依頼された際にも有効だと感じます。例えば、上司から「この課題はおそらくこの辺に原因があるからこの方向性で解決してほしい」と相談され、現場では「ほんとの原因はそこではないと思う」という意見の乖離があった際、どのように調整すればよいか悩むことがあります。そのようなときに、要素分解を用いて課題の本質を明らかにすることができると思いました。 精度の高い分析へ向けて 現在推進しているサイトのUI改善は、ヒアリングを中心に改善施策を検討していますが、今一度データの分析を掘り下げてみたいと思いました。その際に以下の点を実施しようと思います。 - 切り口を複数用意するために、分析に必要なデータを多く収集する - 手を動かして分解する - どんな切り口が分析に役立ちそうか関係者にもヒアリングしてみる - モレなく、ダブりなくの視点で問題ないか、分析の切り口を周囲の人と意見を聞き確認してみる 以上の点を意識して、より精度の高い分析を行いたいと思います。

データ・アナリティクス入門

数字から紐解く現場の実情

データ分析はどう見る? 今週はデータ分析の基本的なアプローチについて学びました。データを評価する際は、まず「データの中心がどこに位置しているか」を示す代表値と、「データがどのように散らばっているか」を示す散らばりの2つの視点が大切であることを実感しました。代表値としては、単純平均のほか、重みを考慮した加重平均、推移を捉えるための幾何平均、極端な値の影響を排除する中央値などがあると理解しました。また、散らばりの具体的な指標として標準偏差を学び、データが平均からどの程度離れて散らばっているかを数値で評価できることが分かりました。 現場での活用方法は? これらの知識は、実際の現場での作業時間、コスト管理、安全管理などに役立つと感じました。例えば、複数の現場における作業時間の平均を求める際、単純平均だけでなく、現場ごとの規模に応じた重みをつけた加重平均を用いることで、より実態に即した傾向を把握できると考えます。また、標準偏差を利用することで、同じ作業工程でも現場ごとのバラつきを数値で示し、ばらつきが大きい工程には重点的な対策が必要であると判断しやすくなります。数字の羅列だけでなく、背景や偏りを理解しながらデータを多面的に捉える習慣の重要性を再認識しました。 次のステップは何? 今後は、各現場における作業時間や工程進捗、コストなどのデータを収集し、単純平均だけでなく加重平均や標準偏差も併せて算出することから始めます。特に、同じ工程内で標準偏差が大きい場合は、どの現場で大きなばらつきが見られるのかを明らかにし、その現場の状況や原因を直接確認することで、関係者と改善策を議論します。また、社内報告でも単なる平均値だけでなく、ばらつきや偏りをグラフなどで視覚的に示すことで、現場間の違いや課題を分かりやすく伝える資料作りに努めていきたいと思います。

「関係 × 本」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right