データ・アナリティクス入門

視点を超えて拡がるデータの世界

要素の重要性は何? 分析に必要な要素としては、プロセス、視点、アプローチの3つがあると学びました。前回はプロセスについて掘り下げた講義でしたが、今回は視点とアプローチに重点を置いて進められ、その重要性を実感しました。 視点の捉え方はどう? 講義では、まず視点としてデータを俯瞰的に捉えることの大切さが強調されました。一つのデータ情報に固執すると、全体のインパクトを見逃し、局部的な視点ではトレンドやパターンを捉え損ねる可能性があると感じました。そのため、まず広い視野で全体を把握し、どこを掘り下げるかを判断しながらスコープを徐々に絞っていくことが、目的達成のためには必須であると言えます。 視点の基本はどこ? 視点に関して、講義では以下の観点が挙げられました:  ・インパクト  ・ギャップ  ・トレンド  ・ばらつき  ・パターン 数値と図で説得できる? また、アプローチについてはグラフ、数字、数式を用いる方法が効果的であり、具体的な数値や図を使った分析が理解を深めるポイントとして紹介されました。 インパクトをどう捉える? 顧客のサービス利用データを検証する際には、どのセグメントが最も大きなインパクトを持っているか、また長期的な視点での変化を確認することが重要だと再認識しました。こうした視点から、インパクトの大きいセグメントに対して営業リソースを集中させたり、コンテンツマーケティングを推進する戦略も考えられます。 セグメント分析は十分? さらに、顧客セグメントの検証をより深堀りする必要性も感じました。導入ユーザーのセグメント検証においては、単に導入社数が多いセグメントだけでなく、導入社数は少ないもののインパクトが大きいセグメントが存在しないかを検討することが求められます。また、単なる属性データの比較に留まらず、実際の顧客行動をイメージしながらデータと照らし合わせて検証を進めることで、より実践的な洞察が得られると感じました。

マーケティング入門

競合分析で見える自社の強みと課題解決のヒント

自社の強みをどう活用する? 何を売るかについて手当たり次第にお客様の困りごとを探すのではなく、自社の強みを活かせるものを探すことが重要だと改めて気づきました。そのためには、まず自社の強みをしっかり認識することが必要です。自社の強みは競合との比較の中で初めて明確になるため、自社の強みだけでなく競合の強みや弱みもきちんと分析する必要があると感じました。 効果的なヒアリング方法とは? また、困りごとの聞き方についても注意が必要だと再認識しました。「何か困っていることはありませんか?」という聞き方では、ほとんど情報が出てこないことを実際に経験しました。そのため、自ら仮説を立てた上でヒアリングを行うことが重要だと思いました。 産業用コネクタ開発の戦略 自社においては、新製品、具体的には産業用のコネクタの開発を検討しています。そのため、自社と競合の強みを改めて分析したいと思います。また、ヒアリングにおいては、既に一定程度認識しているお困りごとを解決できる製品コンセプトを検討し、ヒアリングシートや説明会を営業部と共有して、業界内の主要なプレーヤーへのヒアリングを実施したいと考えています。さらに、マーケターとして積極的にお客様訪問を重ね、業界のニーズや痛点の確認を進めていきたいと思います。 製品開発のための具体的ステップ 具体的なアクションプランとしては以下の通りです: 1. 現在の製品コンセプトとニーズや痛点を結びつける。 2. 技術部とコンセプトの実現に向けた事前打ち合わせを行う。 3. 実現可能性が確認できた場合、営業部と共にキープレーヤーへのヒアリングを実施する。ヒアリング時には業界の顧客ニーズを解決できる仮説を立てて行う。 4. ニーズの確認が取れたら、製品化に向けた社内検討を本格化させる。 このような取り組みを通じて、より効果的に市場のニーズに応じた製品開発を進めていきたいと思います。

戦略思考入門

広がる視野とフレームワーク活用の力

顧客の声をどう活用する? 営業現場で実際に寄せられる顧客の声には大きな影響力があり、似た経験や考えを持つ相手の意見に賛同しがちです。しかし、それに引っ張られるだけではなく、顧客を取り巻く環境や変化、外部環境にも目を向けることが重要です。そこでPESTや3Cなどのフレームワークを活用することで、幅広い視野から情報を整理し、分析結果をもとに優先順位を決定することが必要であると感じました。 メディカルプランにフレームワークを使える? また、今後発売する製剤のメディカルプラン作成にも、同様のフレームワークを活用できると考えています。10年後のブランドビジョンを達成するために重要な成功要因(KSF)を設定する際、PESTを活用して業界の状況を把握し、3Cを用いて市場、顧客、競合、自社を分析する必要があります。さらに、SWOTを用いることで、現在の外部環境や疾患領域における自社製品の立ち位置を明確にし、製品で解決できるアンメットニーズを見極めることができます。分析された情報や顧客、患者から得られた声について議論を重ね、戦術に落とし込んでいくことが求められます。 競合の情報収集はどう進める? 具体的には、疾患領域の発生率や患者数の動向診断、治療法の変化について、情報の偏りがないよう広く情報収集を行います。特に、発生率や患者数などの定量データは、客観的なデータ収集を徹底します。また、新しい治療に関しては、専門家からの意見を収集することで、論文になっていない定性的情報も参考にします。 さらに、競合製品の情報収集として学会発表や論文からの基礎、臨床研究を行い、競合の戦略を分析します。そして、競合の立場になってPEST、3C、SWOTを活用し、キーとなる戦略を理解します。自社製品においては、競合製品に勝っている点や劣っている点について、基礎研究や臨床研究を通じて対策を講じ、関連部署と連携して方針を決定していきます。

アカウンティング入門

カフェ事例で解く利益と価値の秘密

顧客価値はどう捉える? カフェのケーススタディでは、「顧客への価値を考える」という現業の企画・マーケティング要素が盛り込まれており、イメージがつかみやすかったです。この事例を通して、企業が提供する価値と損益計算書の読み方を意識するようになりました。 利益はどう違う? また、「利益」と一括りにすると、どこで利益が出たのか、または損失が生じたのかが分かりにくいと感じました。5種類の利益(売上総利益、営業利益、経常利益、税前当期純利益、当期純利益)の違いを学ぶことで、それぞれの意味が理解できました。 複数事業の見方は? 今回の事例はカフェという単一事業のみを扱う企業に焦点を当てていますが、実際には複数の事業を展開する企業も多いのではないかと疑問に思いました。財務三表の中では、PLは基本的に企業ごとに一つですが、複数事業で構成される場合、損益計算書の見方や事業(部門)ごとのPLの存在についても気になったので、復習時に詳しく調べたいと思います。追って、各部門ごとに作成される「部門別損益計算書」が存在するとの情報も得ました。 競合と自社はどう違う? この学びは、企画立案時の事前調査や他社の分析と比較に活かしたいと考えています。企画段階では、すでに決まった予算の範囲内で進めることが多いですが、競合他社のPLを比較することで、どこで利益を生み出せそうかを意識し、費用投資を検討する視点が身につきました。同時に、競合他社とは異なる、自社ならではの提供価値を大切にしていくことも改めて認識しました。 業界特性はどう読む? 今後は、競合他社のPLの確認と比較、さらには小売や製造など異なるビジネスモデル間でのPL比較を通して、それぞれの業界特性や提供価値を考慮しながらPLを見る習慣をつけるとともに、部門別PLがある企業と、1つのPLに集約される場合との違いについても確認していきたいと考えています。

データ・アナリティクス入門

データで説得力を増す!MBA流の学び

講座内容の印象は? ライブ授業のアーカイブを拝見しました。今回の講座は、ビジネスパーソンが陥りがちな視点を見直し、MBA生が効果的にデータ分析を行えるよう構成されていると感じました。他のEMBA生が適切なデータ加工を行い、ケースの課題について効果的な表を作成して発表しているのに対し、私は数値をそのまま載せ、力量の差を感じることが多く、本講座の内容は非常に参考になりました。今後、レポート作成を行う際には、本講座の内容を何度も振り返り参考にしようと思います。 定量分析の意義は? パソコンを購入する時、私は「価格」と「スペック」を重視しますが、実際にはその場の感覚で購入することが多く、定性的だと感じました。ライブ授業を通じて、定量的な仕分けと表のまとめの大切さ、スモールデータを基に仮説を立て、あるべき姿を検討することが重要であると学びました。 実践の効果は? 社内の会議や発表の場でも、本講座で学んだ仮説やあるべき姿を考えた効果的な資料作成を実践していきます。この実践により、受け手の印象が大きく変わり、営業やメーカーの社内会議でも限られたリソースの中で短期間に成果を上げることに繋がると思います。ビジネスの場では、勘や直観といった定性的な判断に偏りがちですが、一工夫して定量的にデータをまとめることで、社内で数値に基づいた効果的な判断ができるようになると感じました。 一歩踏み出すのは? 普段行っている新NISAの株式投資判断や競馬の予測など、小さなことから始めていきたいです。例えば、サステナビリティに力を入れている会社を投資の目標にして、2050年のカーボンニュートラルに向けた資金の投入度をエクセルで分析し、効果的なグラフ作成に活かせると思います。また、ビジネスの場の資料作成では、小川先生の理論を基に、受け手が効果的な判断を行えるよう努めたいと思います。

アカウンティング入門

ビジネスの心臓部を深掘る学び

P/Lの基礎はどう見る? 先週、P/L(損益計算書)の基本的な理解が大切であると学びました。特に経常利益について、これは持続的に利益が出るかどうかを測る指標であり、本業の儲けに加えて財務活動での収益や費用が常に発生するという基本的な認識を持てたことが、私にとって大きなプラスとなりました。 原価率はどう変化? 次に、売上原価率について、「原材料費が高くなっているのか、それとも原価率が高い商品が売れているのか」といった視点が学びとなりました。売上高が伸びた際には、原価率の変動原因を細かく見て、売上を形成する製品に基づいた戦略を立てることが重要だと感じました。また、当たり前のことではありますが、販売価格が低ければ原価率が上がる(クーポンによる安売りなどが原因)という点にも気付かされました。事業計画を達成するためには、利益を確保しつつ売上を伸ばすことが重要であると再確認しました。 取引先のP/Lって? そして、実際に取引先や競合他社のP/Lを読み解くことに挑戦したいと考えています。具体的には、営業外収益や費用がどの程度あるのか、売上原価率が企業や年度ごとにどのように変化し、何がその原因であるのかを理解し、それが戦略にどのように結びついているのかを把握したいです。また、新聞で最終利益が報じられた際に、売上総利益、営業利益、経常利益の中でどこが影響してその結果が生まれたのかを確かめたいです。 IR活用は確実? これを実践するために、11月に決算が発表された取引先企業のIR(インベスター・リレーションズ)を確認し、売上総利益、営業利益、経常利益の各利益率を同業界の平均や他社と比較することを毎週行いたいと考えています。この取組は、異なる業界である建設、エネルギー、人材業界から各1社ずつ選び、競合他社も含めた計6社を対象としています。

デザイン思考入門

発散と共鳴で生まれた革新

どんなデータで戦略化? 私の顧客は主に社内の営業担当で、取得できるかどうかに関わらず、どのようなデータがあればより戦略的な活動が実現できるかというアイデアを集めるブレーンストーミングが面白いと感じています。現状、データ提供側は、こうしたデータをもとに顧客の考えや行動を理解し、営業がその仮説に基づいた行動に移ることを前提としているため、実際のデータ活用にはつながっていないと考えています。そのため、単に可視化しているデータに対する意見収集にとどまらず、営業として必要なデータについても積極的に意見を集めたいと思っています。 伝え方はどう変える? 既存のデータの可視化においては、私自身が顧客(営業)視点で開発を進めています。しかし、システムベンダーとの要件定義の際、どうしても自分が実現可能だと感じているアイデアしか伝えがちでした。そこで、直近のシステム改修にあたっては、実現が難しいかもしれないアイデアも含め、幅広い提案をもとに話し合いを行いました。 代案提示の意味は? その結果、実現不可能に見えるアイデアに対しても、ベンダー側からは「こういった形なら実現可能」という代案を提示していただくことができました。これにより、自己完結する前にアイデアを言語化し、関係者に発散することの重要性を学びました。 参加者選定どうする? また、ブレーンストーミングの手法についても新たな学びがありました。これまでは、同じグループや部内で取り組むレクリエーション的なブレーンストーミングにおいて、出されたアイデアがどこか似通っており革新的なものを得られなかった印象がありました。今回、出したい成果に合わせて参加者を選び、初めからブレーンストーミングの設計を行うことで、以前感じていたもやもやの原因がわかり、スッキリとした気持ちになりました。

デザイン思考入門

受講生のプロト挑戦と成長記

ユーザーの反応はどう? ユーザーからのフィードバックをもとに改良を重ねることが、成果向上の鍵だと実感しました。そこで、ユーザーの反応をスピーディーに得る手法を検討する必要性を感じています。具体的には、デザイン画や模型など、素早く形にできるプロトタイプの作り方が効果的です。フィードバックは、見た目、機能、使用感という3つの観点で捉えることができ、何を試したいのか、何を確かめたいのかを明確にして適切な手法を選ぶことが重要と感じました。 生成AIの可能性は? また、多くの受講生が生成AIを活用していることにも驚きました。ビジュアル化の面で、今後は私自身もこの技術を積極的に活用していきたいと思っています。 プロトタイプの意義は? 私自身の業務に当てはめると、扱う教材をどのように現場で使っていただくかを検討する役割があります。例えば、現場の指導提案を行う際、いきなり詳細な資料を持ち込むのではなく、まずはプロトタイプとして提案内容を形にし、意見を求めたり実際に使用してもらったりすることで、改善の余地を探ろうとしています。 プロトタイプの罠は? ただし、プロトタイプにこだわりすぎるとスピード感を失い、作成したものに固執してしまうリスクもあります。私自身は、商品開発の立場ではないからこそ、営業、マーケティング、開発といった異なる部門と連携し、情報を共有することが、よりよい企画へとつながると考えています。 十分な準備はどう? 今回の課題に取り組む中で、これまでの積み重ねがプロトタイプの精度を大きく左右することを痛感しました。自分なりに検討はしたものの、他の受講生に比べると十分な準備ができておらず、反省すべき結果となりました。

クリティカルシンキング入門

切り口が切り拓く学びの可能性

データは何を伝える? 表やグラフを用いてデータを可視化すると、数字そのものだけでは見えなかった切り口が浮かび上がり、新たな示唆を得ることができると感じました。単なる数値比較だけでなく、比率の違いを明確に示すことで、より深い理解につながります。 年齢の背景はどう? また、年齢などの属性を分解する際は、機械的な年代区分に頼らず、その背景や特性を考慮することが重要だと改めて実感しました。単一の切り口に固執せず、同じ年齢層内でも別の観点から分析する工夫が求められると感じます。 切り口の秘訣は? 切り口を設定する際は、When/Where/Howといった観点を取り入れることで、網羅的かつ多角的な分析が可能になります。たとえ一つの切り口で顕著な特徴が見えたとしても、それだけに満足せず、さらなる検証を重ねることが大切です。 提供方法は適切? 実際に、生命保険のある支払事由発生状況の数値データを、年代別や発生時期といった切り口で分解し、営業現場に提示した経験があります。しかし、この講義を聞いて、その提供方法が目的に十分沿っていたのか、またはもっと細かく分解する余地があったのかと自問する機会となりました。今後は、まず自分なりに目的を明確にした上で、When/Where/Howの観点から再度切り口を検討したいと考えています。 新たな切り口は? せっかく取得したQ2のデータを活用し、まずはどのような切り口が設定できるのか、単純な年代別ではなく異なる観点からの分解が可能かどうかを試してみようと思います。そして、ある程度データを分解した後は、とにかく可視化に努め、動きながら検証を進めることの重要性を再認識しました。

データ・アナリティクス入門

ゆるっと分析!問題解決のコツ

どうして分解が必要? 問題が起きたとき、まずは「どうすれば」という視点から考えるのではなく、問題を細かく分解して捉えることが重要です。具体的には、まず現状を把握し(What)、その問題がどこで発生しているかを認識し(Where)、なぜ起こったのかを明らかにし(Why)、その上でどのように解決すべきか(How)を検討する流れが求められます。 どのパターンが有効? また、問題解決のパターンは大きく2つに分けられます。一つは、あるべき姿に対して過去の実績が届いていなかった場合、もう一つは、未来の理想と現状との間にギャップがある場合です。これらの状況を整理するためには、ロジックツリーを活用し、「What」「Where」「Why」「How」の観点から一つひとつ問題を解明していくことが効果的です。さらに、情報を漏れなくダブりなく整理するMECEの視点も大切です。 何が運用の障害? 今、営業から導入プロセスに至るまでのオペレーション検討を進めていますが、まだ実際には運用が始まっていないため、各段階で運用面の不備が見えてきています。そこで、まずは現状のフローにおいて何が問題なのか、理想の状態はどのようなものかを洗い出します。その上で、問題箇所を特定し、最適な解決策を考案していく必要があります。 どうやって整理する? 各検討箇所ではロジックツリーを用い、「What」「Where」「Why」「How」の視点で分析を繰り返していくことで、問題を一つずつ確実に解決していく姿勢が大切です。頭の中で漠然と把握しているだけでなく、明確に言語化して整理することで、問題解決への道筋がはっきりと見えてきます。

クリティカルシンキング入門

データ分解で見える新視点の魅力

数字分析の本質は? 数字を分析するとき、一つの要素だけでなく、複数の要素を組み合わせて分解することで、新たな視点が得られることがわかりました。分解することで初めて見えるものがあり、実際にデータを操作してみることの重要性を感じました。エクセルで表をダウンロードし、関数や条件付き書式を使って分析することで、数字に隠れた情報も明らかになりました。また、どの要素をどのように分解すればどんな結果が出るのかを予測しながら作業することが、分析の精度向上に繋がると実感しました。 工数分析の効果は? 具体的には、コールセンターの効率化にこの分析手法を活用したいと思います。応答時間、後処理時間、入電内容、お客様の待ち時間などの観点から、それぞれの業務にかかる工数を数値化できます。これにより、どの業務に多くの工数を費やしているのかを可視化し、効率化の余地がある業務を特定することが可能です。 多角度分析のヒントは? さらに、コールセンターでは顧客から情報を得るだけでなく、それを様々な角度で分析して新たな顧客獲得のヒントを見つけることができると感じました。こうした情報は営業やマーケティング部門でも必要とされるでしょう。どんな情報が役立つかを部署間で話し合い、共有することが重要です。 新たな要素を探す? 今後、毎月集計しているお問い合わせ内容や顧客情報を新しい要素で分析してみたいと考えています。これまではカスタマーセンターの視点で集計を行っていましたが、マーケティング部門の視点でどのように数字を分解できるかを検討し、目的に応じた分析を進めていきたいと思います。

デザイン思考入門

異なる視点が拓く学びの扉

営業観察のポイントは? 私は営業経験がなかったため、営業の日常や業務、そして顧客の様子を観察することで、潜在的に満たされていないニーズや抱える問題に気付けると感じました。また、顧客向けのサービス改善については、普段から顧客と接点を持っている営業メンバーを初期段階から巻き込んでデザインすることで、自分だけでは実現が難しい新しい発想を生み出せると考えています。 体験と意見はどう違う? 自身の体験に基づく感覚や気づきは大切である一方で、異なる視点を持つメンバーや顧客の多様な意見を収集することも重要です。特に担当する事業の規模が大きい場合は、万人受けを狙う必要があるため、幅広い意見を取り入れることが求められます。ただし、個性的な商品を開発する際は、強く実感した体験を基に判断することも必要だと考え、両者のバランスを意識して使い分けたいと思います。 調査手法の有効性は? また、調査手法は複数存在しますが、一人で考えると非効率だったり視点が不足してしまうため、参加型デザインと調査を組み合わせることで、より有効なニーズ把握と具体的な打ち手の作成につながると感じました。客観的な観察とともに、実際に体験する参与観察の手法も非常に有効だと思います。 背負い具の課題は? たとえば、バックパックに関しては、いくつかの課題を思いついたものの、どの課題が最もクリティカルな問題なのかは実際に体験してみないと判断が難しいと実感しました。体験を通じて、さまざまな課題が浮かび上がる中で、登山体験において特に重要な問題がどれであるかを見極める必要があると感じています。

「営業 × 実際」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right