デザイン思考入門

挑戦から生まれる気づきの瞬間

サービス説明はどう? 私は新規サービス開発業務において、サービスのコンセプトや内容を1~2枚のパワーポイント資料に簡潔にまとめ、顧客に説明してフィードバックを得る方法を採用しています。加えて、動画など他の手法も取り入れることで、より多様な表現ができればと考えています。 意見を絞るには? また、短時間で作成できる説明資料という点から、これまでの方法が決して間違っていなかったと実感しました。検証したいポイントや求めるフィードバックをもう少し狭く設定することにより、得られる意見が一層具体的になるのではないかとも感じました。 目的はどう伝える? さらに、プロトタイプに唯一の正解はなく、これまで使用してきたパワーポイント資料も十分に効果を発揮しています。重要なのは、どのプロトタイプを作るかという点よりも、その制作目的を明確にすることだと学びました。

クリティカルシンキング入門

伝えるって難しくも楽しい

どうして情報が伝わる? 情報がどのように伝わるかは、使用するデータの種類や視認性の工夫、そして文字の大きさや太さ、色といった強調方法に大きく左右されます。どの情報をどう使うか、またどのようにメッセージを添えるかで、受け手に与える印象が大きく変わるのだと感じました。 どうして伝え方にリスク? また、伝えやすさだけでなく、意図的にメッセージの伝わり方をコントロールすることには、逆効果になってしまうリスクも伴います。単に情報を詰め込むのではなく、何をどのように伝えるかを慎重に考える必要があると実感しました。 どうして情報を絞る? 依頼や相談をする際には、まず網羅的に情報を集めることが前提です。その上で、短い時間で相手に納得してもらい、効果的なアクションへと結びつけるために、情報を意図的に絞り、わかりやすく可視化することが重要だと考えます。

データ・アナリティクス入門

データ活用で見えた新たな気づき

平均値の選び方は重要? 平均値には様々な種類があり、その選択はデータに大きな影響を与えます。外れ値がある場合、平均値よりも中央値を採用することが重要であり、データのばらつきを数値で示すために標準偏差を使用することが効果的であることを学びました。 輸送会社ごとの加重平均とは? 私たちの事業所で使用する輸送会社の使用率を考慮し、加重平均を採用することで、待機料などの平均額をより正確に把握することができると考えました。 データの明確化を目指して 費用や作業時間を集計するアプリを使い、加重平均と標準偏差を計算することで、数値の差を明確化し、より精度の高い平均値の算出を目指しています。 実績データとの比較はどうする? これらの処理結果として得られた加重平均値を基に、毎月の実績データと比較し、データの妥当性と信頼性を確認する予定です。

データ・アナリティクス入門

仮説と視点で未来を創る

仮説とフレームワークはどう使う? 今週の学習では、仮説を立てる際に、4Pや3C分析といったフレームワークを活用し、多角的な視点で課題にアプローチする方法を学びました。目的に応じて、結論に関する仮説と、問題解決に向けた仮説に分け、時間軸に沿った内容の整理が可能になることを理解しました。正しいフレームワークの適用は、仕事に対する検証マインドを向上させ、アウトプットの説得力を高め、行動の精度とスピードの向上にもつながると感じました。 問題点はどのように見える? また、プロジェクトの進行状況が順調に見える場合でも、現状の分析結果から問題点を把握し、将来的にどのような課題が発生する可能性があるかを立ち止まって検討することの重要性を再認識しました。都度このような振り返りの時間を設けることで、継続的な改善とリスクの早期発見が期待できると実感しました。

クリティカルシンキング入門

グラフで探る新たな気づき

グラフ選定はどう? データ分析においては、単に数字の羅列を眺めるだけでなく、さまざまな視点から検討し、グラフ化することの重要性を実感しました。グラフを作成する際は、どのグラフが適切か、軸区切りや要素の分け方をどうするかなど、一つの方法に固執せず、「本当にそれだけで良いのか?」という視点を持ちながら、複数のグラフを試作することで新たな傾向や示唆に気付くことができました。 伝え方はどう? また、研修で「わかりやすく伝える」ことを重視する観点から、スライドに掲載するデータの見せ方にも改善の余地があると感じました。同一のグラフであっても、絶対値と相対値のどちらが適切かを検討したり、視覚的に訴える矢印を加えるなどの工夫が効果的です。多少の手間や時間はかかるものの、それらの工夫が最終的に伝えたい内容を確実に伝えるための近道になると思います。

データ・アナリティクス入門

実践で変える!問題解決の第一歩

試す手法は何だろう? 問題の要因がある程度明確になったら、試しやすい手法で課題解決に向けた取り組みを実際に試すことが重要です。たとえば、既存の手法と定量的に比較できるA/Bテストのような方法を設計し、実践することが望まれます。 改善はどう実現する? また、課題の分析だけで満足せず、実際に改善を施して目的を実現することが肝要です。データ分析を行う際には、最終的に何を実現したいのかという目的を常に念頭に置く必要があります。 仮説はどう組み立てる? 一方、データ分析の手法に囚われ過ぎると、単にデータを出すことに多くの時間がかかり、問題解決に辿り着かない恐れがあります。したがって、まずは問題の要因を特定し、その後、有識者とのディスカッションや壁打ちを通じて、改善のための仮説を迅速に立案・実行できるように取り組むことが大切です。

クリティカルシンキング入門

柔軟思考で挑む新しい一歩

思考の整理はどう? 論理的思考や多角的な視点、適切な情報評価の大切さを改めて認識しました。情報の背景を正確に把握し、正しい問いかけができることで、複数の観点から物事を分析する力を養う必要があると感じています。 決断の根拠は? また、これまでの経験や情報に頼るだけでなく、判断の正確性を意識して計画を進めることの重要性を実感しました。一方で、考え込むあまり思考時間が長引き、スピード感が失われるリスクにも注意が必要だと感じています。 実行方法はどうなる? 今後は、リスク分析や問題解決、データ分析において、学んだ手法を活用しながら、必要な情報を漏れなくかつ重複なく整理して対応していくつもりです。思い込みやバイアスを排除するための具体的な方法はまだ確立していませんが、試行錯誤を重ねながら取り組んでいきたいと考えています。

マーケティング入門

実践から学ぶ!顧客志向の革新

顧客理解はどう進む? 顧客志向の重要性を改めて認識する機会となりました。利用者と意思決定者が異なる場合でも、実際に購入するお客様の意図を正しく理解することが、効果的なマーケティング戦略の構築に不可欠だと感じました。 価値は何で感じる? また、顧客が感じる価値には、機能的価値、情緒的価値、体験価値の三つがあると学びました。これらの観点は、サービスや製品の提供方法を見直す上で、多角的なアプローチの必要性を示しています。 自社価値はどう映る? さらに、自社が提供しているサービスや従業員向けマニュアルがどのような価値を生み出しているのかを再確認すること、そしてSNSなどを通じて自社の取り組みが世間でどのように受け止められているかをリサーチすることにより、自社が今後提供したい価値について深く考える大切な時間となりました。

データ・アナリティクス入門

仮説で拓く多角的学びの扉

仮説の留意点って何? 仮説立ての留意点として、まずは複数の仮説を立てることが重要だと感じました。一つの仮説だけで検証を進めると、偏りが生じる恐れがあるため、要素を網羅する視点から複数の仮説を考える必要があります。ただし、全てに多くの時間を割くわけにはいかないため、効率的かつ筋の通った仮説をたてるための思考訓練が求められると実感しました。 フレーム活用の意義は? また、フレームワークの活用については、単に使うことを目的にするのではなく、思考の偏りや抜け漏れを減らす手段として活用できると感じています。何が原因かを探る際に、一つの仮説に固執して検証と修正を繰り返す方法は非効率であるため、あらかじめ複数の視点から網羅的に仮説を立てた上で検証していく姿勢が必要だと考えています。

戦略思考入門

3C分析で見える行政の未来

3C分析の目的は? 研修で3C分析が取り上げられることが多く、その目的が各事業の成功の鍵を見出すことにあるという点に改めて気付かされました。 行政の調査方法は? 行政の立場では、競合分析が他の自治体の動向を調査することを意味しますが、どの視点で後追いをするのか、あるいは独自性を持たせるのかといった点は、今後の課題として捉えています。 住民サービスの課題は? また、行政には多くの課題が存在し、特に住民サービスに過剰な時間が費やされる現状は大きな問題です。このため、効果的な対策を立てるには現状の徹底した分析が必要であり、原因分析に加えて住民の動向や自治体の強みをしっかりと把握する必要があると感じました。

クリティカルシンキング入門

グラフでひらく新発見の扉

グラフ選びの意図は何? データをグラフ化する際には、何を見たいのか、何を伝えたいのかを明確に意識してグラフを選ぶことが大切であると認識しています。しかし、実際の現場では、意図がはっきりしていないまま時間の制約の中で作業を進めるケースも多いように感じます。 複数グラフで新発見は? そのような状況では、生のデータを複数のグラフで表現することで、思いがけない発見が生まれることがあります。こうした新しい気付きから、伝えたい内容を具体化していく方法は、スピード感を持ってデータ分析や資料作成を進める上で非常に有効だと考えました。
AIコーチング導線バナー

「時間 × 方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right