データ・アナリティクス入門

物流の待機料問題を解決する分析手法の習得

分析の基本とは? 「分析とは比較である」という教えについて学びました。これは、課題を要素に分解して整理し、個人や会社の状況に応じた基準(目的)を設けて、その要素と基準を比較することを意味しています。基準を「達成すべき目的」とすると、各要素の優先順位や捨てるべきところが明確になってくると感じました。逆に、基準に満たない要素は改善策の検討対象として捉えることができることも学びました。 物流業界での分析方法は? 私は物流会社で働いており、2024年問題の一つとして「待機料」の明確化が挙げられます。待機という問題を要素(要因)に分解し、それらを自社都合と輸送会社都合にグループ化することで、分析の対象が明確になると考えました。 データ活用で何が変わる? 現在、導入済みのアプリから取得できるデータを使い、要素を整理して分析対象を決定する予定です。本講座を通じて、適切な分析方法を理解していこうと考えています。 待機料と時間の相関は? 具体的には、待機料の標準偏差値を算出することで支払い金額の正常範囲を決定し、異常値はチェックする体制を構築します。また、待機料の発生要因と待機時間の相関関係を数値化し、どの要素に対して改善策を打つべきかを社内で共有します。

アカウンティング入門

ビジョンを持つリーダーの育成方法

ありたい姿を考えるとは? ありたい姿を考えることが特に印象的でした。自分の外にある知識や事例を考えるよりも、自己の考えやビジョンを整理し、それを伝えることが非常に難しいと感じました。各科目の内容を理解することも重要ですが、それを身に付けた上でどうしたいのかを具体的に描くことで、学びがさらに加速するでしょう。そのためには、自分自身の思いを言語化していくことが必要だと感じました。 ビジョンを伝える方法は? 自分がどうしたいのか、どうありたいのか、この仕事を通じてどんなことが実現できるのかを店舗メンバーや顧客に伝えたいと思います。管理職や経営者の立場を考えると、どんな人に人がついてくるかを考えました。ビジョンや価値観を持ち、自分の意思が明確な人、少なくとも自分の意思を持っていると周囲に感じさせる人に、人はついていくのだと思います。そのために、アカウンティング以外にも経営に必要なスキルを学びながら、自身の考えを深める必要があると感じました。 思考を深める時間をどう確保? まずは、自分が手を動かす作業の時間を少し減らし、思考する時間を増やす必要があります。手を動かす時間が多くなると、思考を深める時間がどうしても減り、上述の目標が実現しにくくなるからです。

データ・アナリティクス入門

戦闘機も驚く分析の力

分析の本質を問う? 分析においては、情報を分類し比較することが基本であり、目的は人が考えるものであると実感しました。データに存在しない要素についても推測しながら考える必要があり、戦闘機の例を通じてその重要性を感じました。仕事に活かすためには常に目的を忘れず、何のために分析を行っているのかを明確にし、仮説を常に立てることが求められます。また、仮説を立てる際にはラテラルシンキングの発想も必要だと感じています。 人事データの壁は? 人事領域のデータを取り扱う際、定量化が難しい項目が多い点に気づきました。そのため、データの収集方法から見直し、定量データとして分析できるよう設計することが必要であると考えます。このアプローチにより、あいまいな感覚で当たりをつけるのではなく、常に仮説を持って検証を進めることができると感じました。 目的再確認の意義は? さらに、データ分析を行うにあたり、何のために分析をするのかという目的を明確にすることが肝要です。目的に沿った設問項目の設定と、得られた結果からどういった提言を行うかをしっかりと考える力が必要だと感じました。分析すること自体が目的化しないよう、定期的に目的を振り返る時間を持つことも大切だと改めて思いました。

クリティカルシンキング入門

自問自答が育む確かな自信

疑問で自信は築ける? 自分に自信を持つという言葉はよく耳にしますが、私が感じる自信は、クリティカルシンキングという批判的思考の結果として生まれるものです。問いを立て「本当にこれで良いのか?」と自問自答を繰り返すことで、思考や表現方法が次第に洗練され、結果として自信へとつながっていくと実感しています。 伝え方はどうする? また、情報を発信する際には、誰が読んでも理解できる内容であることを意識しています。文章やプレゼンでは、主張したいポイントをさまざまな手法で表現し、聞き手の注意を引く工夫が重要です。会議や議事録においては、問題の核心(イシュー)がすぐに確認できるように記載することで、参加者全員が共通の理解を持てるよう努めています。さらに、周囲を巻き込み、動いてもらうためには、納得感を与える具体的な根拠を提示することが大切です。 意見で成長する? 加えて、アウトプット後は時間を置いて再確認する習慣をつけています。自分だけでなく、他者にフィードバックを求めることで、より良い成果につながると考えています。会議の際は、最初に目的(イシューやゴール)を明確に説明し、参加者にとっての行動のメリットを意識した根拠を示すよう心がけています。

クリティカルシンキング入門

スライド作成のコツを学び、効率UP!

データの相関性とは? メッセージと図、グラフなどのデータの相関性について考える際には、まず伝えたい内容と誰に伝えるかを明確にすることが重要です。これにより、作成にかける時間の効率も向上します。 スライド作成の工夫は? スライドの補足的な要素として、矢印、フォント、配置などを有効に活用することは大切です。特に、新入社員向けに年間予算作成方法をレクチャーする際には、図や一般的な用語を使い、文字数を増やさずに分かりやすい資料を作成することを心がけています。 初心者の視点を忘れない 自分が慣れてしまっている内容でも、毎年のレクチャー中に思わぬ質問が出ることがあります。これは、私にとっては当たり前でも、初めての人にはわかりにくい部分があるためです。そうしたフィードバックを忘れずに、資料を日々校正し直していきたいと思います。 スムーズなスライドチェック スライドが完成した後には、必ず読み手の視点で見直し、スムーズに読み取れるかを確認します。もし読み取りづらい場合は、矢印、配色、メッセージ、配置などを再検討します。また、社内外問わず良いプレゼン資料に触れる機会を活かし、コツを学んで自分のプレゼンのバリエーションを増やしていきたいです。

クリティカルシンキング入門

デジタルツール活用で効率アップした話

オンライン学習のメリットは? 私はオンライン学習サービス「ナノ単科」を受講して、非常に有意義な時間を過ごすことができました。この講座では、最新のビジネス知識やスキルが学べるだけでなく、実際に業務に応用できる実践的な内容が豊富に含まれていました。具体的には、**デジタルツールの活用法**や**データ分析の基本原則**など、仕事に直結する知識が多く、業務効率の向上に役立っています。 ストレスフリーな学び方とは? 講義はオンライン形式なので、自分の都合に合わせて学習を進められる点が良かったです。また、テキストの内容がわかりやすく、動画講義も見やすい構成でストレスなく学べました。 業務への応用で得た成果は? さらに、ナノ単科を通じて得た知識を業務に活かすことで、自分自身のスキルアップを感じることができました。講義内容を実際の業務課題に応用する際の具体的なアプローチ方法も紹介されており、実務との結びつきが非常に強い点も評価できます。 このように、ナノ単科は自分のペースで学びながら、実務に直結するスキルを身につけられる優れたオンライン学習サービスだと思います。今後も継続的に利用して、さらなるスキルアップを目指したいと考えています。

デザイン思考入門

受講生が綴る成長と共感の物語

デザイン思考はどう変わる? デザイン思考は、当初は外見や部分的な要素に焦点が当てられていましたが、徐々に全体設計へのアプローチへと発展してきました。お客様への共感を軸とすることで、顧客にとって本質的な課題解決を目指す姿勢は、単に技術的に高度であるだけではなく、実際に役立つ製品やサービスへと結実するために不可欠です。 技術進歩と課題は何? また、AIの進化により、ITシステムの試作が容易になったため、全体プロセスの回しやすさは向上しています。しかしながら、細部の制御が難しい現状では、あと一歩の実現に大きな工数と時間が必要となるケースも見受けられます。加えて、顧客と製品やサービスの提供者はそれぞれ別の利害を持つため、どうしても緊張関係が生じるという課題があり、こうした点を含めた総合的な方法論の整備が望まれます。 試作と提案はどう進む? 今後は、ChatGPTなどを活用して顧客の発言から課題やソリューションを分析し、その結果を基にReplitで試作案を作成、実際に顧客に提示するという流れが実現できるのではないかと考えています。授業を通して、こうしたプロンプトの設計など、具体的な手法を確立していくことが目標です。

クリティカルシンキング入門

データ分析で見つけた新たな視点

データ加工とMECEは? データの加工や分け方、そしてフレームワークについて学びました。提示された情報をただ受け入れるのではなく、その背後に隠された情報を見抜く重要性を認識しました。特にMECEの活用方法について考える機会がありましたが、必ずしもMECEにこだわる必要があるのかという疑問も感じました。MECEが手段であり目的でないことを意識することが大切です。 戦略調査の目的は? マーケティング戦略の策定では、現在のサイトへの流入経路や登録経路を様々な角度から調査しました。特に、業歴が長い会社の場合、リピーター率が高いのではないかという仮説を立てて調査し、既存顧客からのフィードバックにどのような特徴があるのかも分析しました。また、成果を上げた新人の要素を細分化して理解を深めました。 連携の秘訣を探る? 最初に関係各所と連携して分析プロジェクトを立ち上げました。プロジェクトに興味や共感を持った人々から順に説明の時間を頂いてミーティングを行い、データ分析によってどのような示唆が得られるかについて話し合いました。その過程でスモールウィンを設定し、うまくいった内容を共有してより多くの人々を巻き込んで進展を図りました。

マーケティング入門

売り手と買い手視点の融合で新たな映像体験を

講義で何が響いた? 今週はライブ講義の総まとめがありました。その中で、ビジネスに関わる自分たちが売り手であると同時に、買い手でもあることを忘れてしまいがちだという意見が他の受講生から出され、非常に共感しました。買い手としての視点を客観的にとらえることは、大きなリソースになり得るのだと強く感じました。 感情で分ける理由? この視点を自分の仕事や業界に当てはめると、映像作品のターゲット設定に役立つと考えています。従来のgenderや年齢でのターゲティングに加えて、視聴者がコンテンツに求める感情(例えばスリル、ワクワク、笑い、感動など)に基づいて新たな視点でセグメントを導入することを検証してみたいです。 調査はどう進める? そのために、消費者調査チームと連携し、より効果的なセグメント設定や調査方法を検討する予定です。また、データ分析チームと協力して、過去の視聴傾向を嗜好で分析することも考えています。さらに、コンテンツ消費はお金よりも「時間」の消費であるため、タイパを重視する世代や時代の傾向にも対応できるよう、プロダクトの視点で作品を見ることで得られる感情を示す工夫をするなどの方法を模索していきたいと考えています。

リーダーシップ・キャリアビジョン入門

観察で磨く支援型リーダー術

リーダーシップはどう見極める? 企業変革の必要性と企業運営の複雑化が進む中で、マネージャーにはリーダーシップとマネジメントの両面での対応が求められています。リーダーシップのスタイルを見極める際、誤った認識をしてしまうケースがあると感じました。そのため、日常業務の中で業務の種類やメンバーの特性に合わせ、どのリーダーシップを発揮するべきかを意識的に考えていくことが重要だと実感しました。また、メンバー間にコンフリクトが存在するか否かが、対応方法を選ぶ決定的なポイントになるため、十分に注意する必要があります。 支援型リーダーシップはどう実践? 今年度から新たに移動してきたスタッフに対しては、支援型リーダーシップを実践するよう努めたいと考えています。まずは各メンバーの理解状況をしっかりと観察し、進捗を確認しながら、目標達成に向けたスケジュール管理を徹底します。その一環として、業務説明の時間を改めて設け、業務の目的や今年度目指すべき目標、年度内に実施するタスクとスケジュールを明確に伝えます。さらに、伝えた内容の理解度を確認した上でタスクに取り組む体制を整え、定期的に(月に一度)進捗の確認と振り返りの時間を設けるようにしていきます。

クリティカルシンキング入門

課題を「分解」してデータを見落とさない秘訣

解像度向上の手法とは? データの解像度を上げる手法をいくつか学びました。「全体像をとらえる」ことで近視眼的な視点から脱却し、「分解」を積極的に取り入れることで、課題や問題をより具体的に抽出することが可能です。漏れや抜けをなくすことが、一見遠回りのように見えても、結果的には最も効率的な方法であると感じています。 異なる視点での分析の重要性 売上分析や時間帯分析などを行う際には、ただ数字を並べるのではなく、違う角度からの見え方を取り入れることで、見落としや抜けを防ぐことができると考えています。プレゼンの機会があった際も、通り一遍の見方ではない切り口を提案することで、新たな課題を抽出することができるのではないかと感じています。 数値報告での注意点は? 月例のミーティング用に数値報告の素材を提供する際は、以下の点に注意しています: - 並べた数字を別の視点で並べ替える。 - 補完できる部分がないか同僚に相談し、思考や見方の偏りに気付く。 - すでにグラフ化されているものについては、異なる切り口で見せ方を検討し、恣意性がないか確認する。 これらの工夫により、より具体的で効果的なデータ分析が可能になると実感しています。

データ・アナリティクス入門

問題解決のプロセスを活かす学び

問題解決のプロセスとは? 問題解決には明確なプロセスがあります。具体的には、What、Where、Why、Howの6つのステップがあり、この順番を守ることが重要です。まずは、なりたい姿と現状のギャップを把握することが分析の第一歩です。そして、解決方法を考える前に、現状で起きている問題の状況や原因を見つけることに時間をかける必要があります。 自分の思考の癖をどう活かす? 私の場合、すぐに解決方法(How)に飛びがちです。しかし、自分の考え方の癖を知ることも問題解決において重要です。オープンデータから社会課題を洗い出すのが現在の業務ですが、仮説に対して問題を絞り込む際にロジックツリーが役立ちます。基本的にはチームで取り組むため、思考のプロセスを視覚化・言語化することで、情報共有を齟齬なく行えるようにしています。 データ分析で何を学びたい? データ分析を体系的に学ぶことで、ロジカルに再現性のあるデータ分析に取り組みたいと思っています。特に、ロジックツリーを作る際には「手書き」を心がけたいと思います。紙に書くことで思考が整理され、重要事項には丸をつけたり矢印を使ったりすることで、優先順位を決めるのに役立ちます。

「時間 × 方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right