データ・アナリティクス入門

代表値で解く!データ発見の旅

代表値の魅力とは? 今回の学習では、従来の平均値だけでなく、加重平均、幾何平均、中央値といった代表値の種類について新たな知見を得ることができました。それぞれの概念を学ぶことで、データ分析の基本的な考え方を再確認する良い機会となりました。 グラフ選定のポイントは? また、グラフの選び方についても、これまで感覚的に選んでいたグラフの代わりに、何を伝えたいのかという結論を明確にした上で選定する重要性を学びました。これにより、視覚的にデータを効果的に伝える方法を理解できるようになりました。 データ読み取りの工夫は? さらに、データの読み取りにおいても、これまで直感に頼って見ていた部分を見直し、特徴的な箇所に注目するという具体的な指標を取り入れる点が印象に残りました。より重点的に情報を把握する手法を学べたことは、今後の業務に大いに役立つと感じています。 Web分析の疑問点は? 業務面では、Web分析の中で代表値の使用機会が少なかったため、なぜ使用しないのか疑問が生じました。具体的には、1ユーザーあたりの平均ページビュー数や訪問時間帯の最頻値の取り扱いについて、今後の必要性を再考するきっかけとなりました。 数値羅列の問題点は? 最後に、CSVで抽出される数値の羅列では異常値に気づきにくいという実務上の課題も再認識しました。毎日管理しているデータを視覚化することで、より直感的に異常値や問題点を把握し、効果的な分析につなげたいと考えています。

データ・アナリティクス入門

仮説検証で未来を切り拓く

仮説の立案方法は? 今回の講義では、「問題解決の4つのステップ」のうち、問題箇所を特定した後に原因を究明するため、原因の仮説を立てて検証するデータを集める考え方を学びました。原因の仮説立案には、3Cや4Pなどのフレームワークが有効で、視野を広げる軸となると実感しました。 なぜ複数仮説? また、実践力を養うためには、決めつけずに複数の仮説を立て、ヒト・モノ・カネといった要素に網羅性を持たせることが大切です。数字をただ分析するのではなく、何と何を比較して検証すべきかを深く掘り下げる視点が必要だと感じました。 仮説の分類と時間は? ビジネスにおける仮説思考は、「ある論点に対する仮の答え」として、結論の仮説と問題解決の仮説に分類され、時間軸(過去・現在・未来)に沿って内容が変わることが分かりました。正しく仮説検証を実施することで、説得力や仕事のスピード、精度が向上することも理解できました。 仮説習慣の活用法は? 普段から仮説提案型営業を心がけている私にとって、今回の講義は仮説検証の重要性を再認識する良い機会となりました。今後は、3Cや4Pのフレームワークを具体的に活用し、仮説を考える習慣を更に身につけていきたいと思います。 実務での仮説活用は? 日々の業務では、課題解決と検証を繰り返しています。どんな難しい案件に直面しても、自分なりの仮説立案法や問題解決のアプローチについて、フリートークで意見交換ができれば、より一層の学びと成長につながると感じています。

クリティカルシンキング入門

数字で導く!分析の新たな視点

データ加工で全体像を把握するには? データを加工する際には、与えられた情報をそのまま受け取るのではなく、全体像を把握するために必要な項目を追加することが重要です。単に生の数値を羅列するのではなく、表として整理することで、様々な気づきを得ることができます。 グラフ化で得られる洞察とは? また、グラフ化する際には、数値をどのように区切るかが得られる解釈に大きな影響を与えます。どのように分ければ、より良い気づきを得られるかを意識しながら数字を整理することが求められます。グラフ化はあくまで手段であり、そこから得られる洞察を基に仮説を立て、実際の行動に結びつけて改善を図ることが目的です。 傾向が見つからないときの価値は? さらに、数字を分解してグラフ化した結果、傾向が見つからない場合もありますが、それは失敗ではありません。むしろ、傾向がないことが判明したこと自体に価値があります。 私はソフトウェアエンジニアなので、数字を分析する作業はあまり多くありません。しかし、例えばチームのミーティング時間を削減する際、いつ誰がどれだけの時間をミーティングに費やしているのかを分析するために、このような方法を活用できると考えました。 分析作業の目的をどう意識する? 分析作業に取り組む際、つい情報をまとめることが目的になりがちです。しかし、「何のための分析作業なのか?」、「仮説を得るためにはどのようにまとめるべきか?」といったことを常に考えながら、分析作業を進めたいと思います。

データ・アナリティクス入門

心に響く受講生のリアル声

分析の流れは? 分析とは、情報を分類し整理して、比較対象や基準を設ける作業です。データには種類があり、それぞれに適した表現方法を選ぶことで、どのように加工し見せるかが重要となります。また、分析のプロセスは、まず目的を明確にし、次に目的に沿ったデータや項目を選び、その上で実際にデータ分析を行い、最後に結論やまとめを導く、という流れが求められます。特に目的の明確化、データ・項目の選定、そして結論づけが重要です。 原価推移は分かる? 現在、立ち上げ中の製品原価推移を毎月報告し、現状を集計して前回との比較を行い変化点を確認しています。この報告は現状把握を目的としているものの、集計データから見える原価と、量産化後に実際に把握される実原価との間には差異が存在します。 差異の原因は? そのため、この差異を低減するために、必要な情報が何かを検討し、データ収集と分析を実施することが求められます。どこに差異が発生しているのかを把握し、解決のための打ち手を提案することが目的です。 どのデータを選ぶ? 比較に用いるデータとしてどの項目を選定するか考えると、多くの情報が存在するため、どこから手をつければよいのか迷うこともあります。まずは、既に把握している情報から仮説を立て、検証を進めるのが良いでしょう。その際、データをどのように加工し分析につなげるかに注意する必要があります。特に実原価を正確に把握するためには、人、物、時間といった要素が流動的である点に注意が必要です。

データ・アナリティクス入門

分析で開く意思決定の未来

仮説検証の視覚化は? ライブ授業では、これまで学んできた課題の特定方法や仮説の設定、結果の検証といったプロセスを再確認することができました。特に、仮説検証の成果をどのように可視化するかについては、参加者の意見を聞く中で、棒グラフや円グラフ以外にも表現方法が存在することを知り、新たな視点を得ることができました。また、限られた分析時間の中で、本当に必要な分析を見極めることの重要性を改めて実感しました。データが手元にあると分析したくなりますが、何のために分析するのか、得られた結果をどう活用するのかを常に念頭に置いて進めるべきだと感じました。 分析目的と改善は? 講座を受講する前にデータ分析を学ぶ目的は「意思決定に活用するため」であり、その目的は6週間の学びを経ても変わっていません。授業内ではマーケティングに関する事例も取り上げられましたが、現業務において活かす機会は少ないと感じます。一方で、A/Bテストや4P分析は業務改善のための改善案策定に、また相関分析は将来の経費推計に役立つと考えています。 何かを決定する際は、まずデータ分析で解決可能かどうかを検討しています。その際、何のために分析を行うのか、何を明確にするのかを設定し、ただ単にエクセルでグラフを作成するのではなく、その手法が最適かどうかを熟慮することを習慣にしています。また、年1回の定例報告の場合、長年変わっていない報告形式も多いですが、可能な範囲でより伝わりやすい形式に改善していくことが重要だと感じています。

データ・アナリティクス入門

目的明確!小さな成功体験から学ぶ

分析はどう進める? 分析を始める際は、まず何をどのように比較するかを明確にし、普遍的かつ偏りのない俯瞰的な視点で対象を捉えることが大切です。その上で、最初に目的をしっかり設定し、仮説の構築を行うことが必要です。実際、どの手法を用いるかよりも、まず「何」を重視し、体系的に物事を整理していくことが大切だと実感しました。 目的は明確か? また、何をしたいのか、なぜそれをしたいのかという目的を明確にすることに十分な時間をかけるべきです。出発点のズレはプロセスが進むにつれて大きくなり、取り返しがつかなくなる可能性があるためです。これまで、単にデータを作成するだけで有用な仮説がなかったために、データが十分に活かせず埋もれていた傾向があると感じています。 成功体験は大事? 既に取り組んできた方法もありますが、完全には浸透していない部分もあると実感しています。そこで、今後は継続的に小さな成功体験を積み重ねることが重要だと考えています。 具体手順は? 具体的には、以下の手順を意識しています。 ・まず、複数の視点からデータを検証し、それぞれの状態を正確に把握する。 ・何と比較するか、またプロジェクトを進めるためにどのデータを比較対象とするかを明確に決定し、一度決めた基準は後で変更しない。 ・進捗の状況を見ながら、行動の軌道修正が必要か否かを判断できる体制を整える。 ・結果が出た際には、なぜそのような結果になったのか振り返り、データ上で整理しておく。

戦略思考入門

捨てる勇気で未来を変える

決断に必要な覚悟は? 今週の学習では、職位に伴い「捨てる=決める」覚悟が求められることを再認識しました。決断の難しさは、実行によって得られるお客さまの満足度や、金銭的コスト、運営効率といった具体的な要因に加え、現状の人間関係にも左右されるため、一層厄介に感じます。本来、仕事の目的はお客さまのためであることを再確認し、その視点を失わないよう、勇気を持って決断していきたいと考えています。 なぜ変化が難しい? また、GAILにおける業務や対応について、なんとなく慣習的に行われている点が存在することも痛感しました。変化を起こすにはエネルギーが必要で、現状維持が一番楽に見えるため、思考停止に陥ってしまうケースがあると感じます。短期的には問題がなくとも、長期的には現状維持が続くことで衰退につながる可能性もあるため、PDCAサイクルを積極的に回し、業務の背景や考え方を継承することが重要だと思いました。また、定期的な担当者(またはマネージャー)の入れ替えにより、「なぜこうする必要があるのか」という疑問を持ち続ける環境を整えることも大切です。 なぜ優先順位付けが必要? さらに、整備士向けのスキルコンテストの事務局業務では、毎年恒例の行事ということもあり、過去の方法にただ従っているタスクがいくつか存在するのが現実です。限られた時間の中で、これまで何となく実施してきたタスクに優先順位をつけ、定量的な判断に基づいて、継続するか見直すかの決断を下す必要があると感じました。

戦略思考入門

新参者の視点で戦略を刷新する方法

慣例を捨てる視点とは? 戦略を考える際に重要なのは、昔からの慣例や惰性で行っていることを見直し、捨てる視点を持つことです。しかし、長く同じ部署や会社にいると気づかないことも多いので、新参者の目を活用するのが有効です。 判断基準をどう明確化する? 何を優先するかの判断基準を明確にすることで、捨てる判断を容易にし、関係者の納得感や後からの振り返りも可能になります。また、トレードオフでどちらかを選ぶだけでなく、両方の良いとこ取りをして効果を最大化することも考えられます。 自発的行動をどう引き出す? 変革の8ステップの5番目である「自発的な行動を生み出す」場合には、「次は何をする?」と問いかけることで、相手に考えさせ、指示して動かすことから脱却させます。 課題解決での優先順位は? 現在の業務である課題解決の方針検討では、いくつかの対策方向性を考えても完璧な案は存在せず、トレードオフが発生しています。そもそものイシューに立ち返り、物事の優先順位を考えた上で総合的に判断し、選択する必要があります。他者との合意形成では、この優先順位が一致するかどうかが重要です。 部下の成長をどう促進する? 次にどうすれば良いのか部下に聞かれた際には、逆に「どうする?」と問い返し、自発的な行動を促します。それにより、部下と上司の時間を節約し、業務のスピードも向上し、部下の成長を促進できます。ただし、間違った方向に進まないよう、これまで以上の頻度で状況確認が必要です。

クリティカルシンキング入門

視野を広げる学びのルーティン術

具体と抽象の往復はどう実践する? 具体をたくさん挙げてから抽象化し、そこから具体に落とし込むという「具体と抽象の往復」が重要だと感じました。また、3つの視座を持つことにより視野を広げることも大切です。特に、さまざまな角度からの視点を理解することが課題なので、継続して意識していきたいです。 病院に関する洞察はどう活かす? 病院に関する話では、時間軸を拡げた発想が求められました。原因や影響、目的まで意識することが、長期的な計画を考える際に重要だと思いました。このように、結論にすぐ飛び付かず、視野を広げてさまざまな可能性を模索し続けることの重要性を感じました。 仕事の進め方を見直すポイントは? 仕事の進め方についても、いつものやり方にこだわらず、もっと効率的で効果的な方法を模索することができます。普段慣れていることでも、「本当にこれでいいのか?」「違和感はないか?」と、良い意味で懐疑的になることで、問題発見や解決につながると思います。キャリアプランを考える際にも同様のアプローチを活用したいです。 朝のルーティンを充実させるには? 具体と抽象の往復を実践するために、まず自分なりに考えを紙に書き出したり、ポストイットに書いて部屋に貼るなど、視覚的に整理しています。これを毎朝のルーティンにしています。また、視野を広げるために本を読んだり、人の話を聞いたり、セミナーを活用したりしています。さらに、敢えて興味の薄い分野の勉強にも取り組んでいます。

リーダーシップ・キャリアビジョン入門

エンパワメントで輝く自律リーダー

エンパワメントとは何か? エンパワメントという言葉は以前から耳にしていましたが、今回、具体的な意味や方法について学ぶ機会がありました。目標達成に向け、組織の構成員が自律的に行動するためのリーダーシップ技術として、エンパワメントの重要性を実感しました。 共有と支援の秘策は? 具体的には、まず目的やビジョンを共有し、対象者の状況を把握した上で、適切な仕事を依頼するというステップがあり、必要に応じて支援を行うことがポイントです。これらのプロセスでは、常にコミュニケーションが不可欠であると再認識しました。 整理で何が変わる? また、実際の業務においても、無意識にエンパワメントの考え方を取り入れていた部分があったと感じますが、今回改めて整理することでその意味をより深く理解できました。今後は、目標やビジョンをしっかりと伝え、相手に理解・納得してもらうことを重視したいと考えています。その上で、各メンバーの状況に応じた仕事の依頼や、適切なフォローも行っていく所存です。 チーム内でどう調整? まずは、コミュニケーションの時間を意識的に確保し、メンバーの特性やモチベーションを理解することから始め、それぞれに適した目標や計画の策定に取り組んでいきたいと考えています。一方で、仕事の優先度が高くないメンバーや、価値観の異なるメンバーに対して、どのように目標を共有し計画を立案すればよいのか、その具体的な方法を知りたいという思いもあります。

クリティカルシンキング入門

思考のクセに気づき、自分をアップデートする方法

学びを深めるためには? 学びを深めていく中で、この講座は前提を理解する場として役立っています。 具体的には、以下の3点が重要であると感じました: 1. 各個人には必ず思考の偏りが存在する。 2. 批判的思考力(クリティカルシンキング)の対象は他者ではなく自分である。 3. 客観的に考えるためには、自身とは異なる環境や業種の人々とのディスカッションが効果的である。 他者目線をどう取り入れる? この内容をより深く理解するためのワークや対策方法を学びました。他者目線は時代の流れや状況で意見が変化することが考えられるため、日々意識してインプットとアウトプットを行っていきたいと感じました。 意識変革への第一歩は? 残り5回の講義をより効果的にするために積極的に参加していきたいと思います。 次に、会議や決定が必要な場面での活用についてです。日々の業務を作業的にこなすのではなく、本当に今のままで良いのかを常に考える習慣を持つことが重要です。このように問い続けることで、どの角度からの問いにも答えられるようになり、提案や意思決定の精度が向上すると考えます。 直感を信じすぎる? また、直感的な意見を避けるため、スペースを持つことを意識しています。その上で出した答えに対して「本当にそうか?」と自問自答することで、精度の高い提案や発信ができると信じています。この習慣を身に付け、さらにこのサイクルに時間をかけ過ぎないように訓練していくつもりです。

データ・アナリティクス入門

データ分析をDX推進の鍵にする方法

フレームワークをどう活用する? what-where-why-howのフレームワークで考えることが非常に印象に残りました。これを会社でよく言われるPDCAサイクルに当てはめて考えてみました。P&Cの部分はwhat-where-why-howに、D&Aの部分は施策と解決策の実行に相当します。 仮説思考の真価は? 特に仮説思考はwhere→why→howの部分に適用できると思います。仮説と結論をセットで考えることで、無秩序な分析を防ぎ、限られた時間と資源で施策を考える際に有効だと感じました。 更に、単なるデータ集計とデータ分析は異なるという点についても再認識しました。 データ分析をどう実践する? 私は現在、メーカーの物流子会社で働いており、様々なシステムから日々多くのデータが蓄積されています。しかし、DXを推進すると言いつつも事なかれ主義が根強く、なかなか進展しないのが現状です。今回学んだwhat-where-why-howの流れでデータを分析し、グラフ化して社内で共有することで、的を絞った改善策の検討に役立てることができると思います。 目標達成に向けた分析とは? 具体的には、何を達成したいのかを明確にし、日々蓄積されるデータから目的に合ったデータを選定して分析し、情報として活用します。その結果を「わかりやすく伝える」ことを念頭に置き、周囲に共有して活動に巻き込み、活動の方向性を決める役割を担いたいと考えています。

「時間 × 方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right