データ・アナリティクス入門

データ分析の真髄に迫る学びの旅

データ分析の基本とは? まず初めに、データ分析の大前提として「データは分析し結論を導き出すための情報・数値であること」と「分析の本質は比較であること」が言語化されていたことが印象的でした。これにより、分析の目的や方法を再認識することができました。 目的を見失わないためには? 分析の目的を見失わないこと、目的を果たすために適切な仮説を立てることは重要です。しかし、実際には想定結果が出ず、焦ってデータ収集をやり直すことや、仮説が間違っていて最初からやり直すことが多々ありました。これは、深く考えることが不足しているからだと改めて気づきました。 効果的な比較対象の選定法 また、比較の対象を選定する際、分析する要素以外の条件を揃えることができていなかったように思います。さらに、分析結果をもとに意思決定を行うためには、どのようなデータをどう加工すると伝わりやすいかを理解することも欠かせません。データの種類に応じた加工法やグラフの見せ方ができていないケースが多く、自己満足に陥っていたと感じました。 第三者の知識をどう活かす? これからは、まず自らしっかり考え、第三者の知識や知見・知恵を借り、フィードバックを活かすことが重要であると再認識しました。 次期中期計画にどう活かす? 次期中期事業計画の策定時には、現状を振り返り、次期中期計画を「なぜその目標を設定するのか」「なぜそれを独自性(強み)と仮定したのか」「なぜそれをやる/やらないと仮定したのか」「現経営資源を踏まえた場合、なぜその方針が妥当なのか」と問うことで、分析結果を用いて説得力を持たせたいと考えています。「目指すべき目標を明確にする」「独自性(強み)を持ち自覚する」「やることとやらないことを峻別する」「目標までの道のりの妥当性を示す」これらを一つずつ丁寧に進めていくつもりです。 ゴールをどう明確にする? バランススコアカードを用いて現在の中期計画の問題点を再考し、新たなビジョンと戦略を立てるためにゴールを明確にし、その達成策を明示します。戦略マップを作り、戦略の構造化を図ることで、分かりやすいアクションプランを立てたいと考えます。データ分析に基づくことで、より良い意思決定ができると信じています。 初めての取り組みに挑むには? 初めての取り組みが多いですが、「自ら深く考える」「第三者の知識や知見・知恵を借りる」「フィードバックを活かす」ことを繰り返し、関係者全員にとって有益な中期計画にしていきたいと考えています。

マーケティング入門

受講生が紡ぐ市場戦略のヒント

新商品の普及はどう? 新商品が普及するためには、将来のアイデアや技術と比べたときの比較優位性、生活の変化に過度に影響を与えず採用されやすい適合性、使い手にとって分かりやすく易しいわかりやすさ、実験的な使用が可能な使用可能性、そして周囲にその存在が明確に観察される可視性の5つの要因があると学びました。 新市場はどんな印象? また、新しい市場を開拓する商品については、売れるかどうかは顧客が持つイメージに大きく左右されるため、まずは顧客の声に耳を傾け、その心理を丁寧に理解することが重要であると感じました。 多様化への対応は? さらに、現在の多様化する市場環境に対応するためには、従来のマスマーケティングから脱却し、客層やニーズを絞った戦略が、より魅力的な商品創出と経営資源の効率的な活用につながると理解しました。 マーケティング戦略は? マーケティングミックスにおいては、製品戦略、価格設定、流通チャネル、そしてプロモーションの各要素が重要な役割を果たしています。製品においては、コア価値となる製品そのものだけではなく、パッケージやデザイン、アフターサービスなどの中間付随的な価値も考慮し、顧客のニーズを満たす良い製品・サービスを開発することが求められます。価格はコストや製品の価値、競合の価格を踏まえて適切に設定し、流通では販売場所やチャネルの特性、顧客の動機づけを意識する必要があります。さらに、プロモーションは製品の魅力を伝えるコミュニケーション戦略として、内容や媒体の選定が重要な課題となります。 具体例で確認する? 具体的な事例として、飲料業界において新商品の普及が難しい背景を踏まえた取り組みも印象的でした。ある自社レモン飲料では、20〜40代の幅広い層をターゲットとし、特に女性に定評のあるレモンのイメージを活かしながら、むくみ解消という具体的な課題にフォーカスして製品開発を行っています。ヘスペリジンを配合した製品は、通常品よりも若干高い価格に設定されながらも、適切な販売チャネルで提供され、ホームページや口コミを通じたプロモーション手法が効果的に機能していると感じました。 実態調査の意義は? 商品開発にあたっては、コンビニや量販店で露出されている商品の調査、食品に限らずバイヤーからの意見収集、そして流通における競合の価格設定、特売頻度、露出度、キャンペーンなどを調査することが、今後の戦略を考える上で大きなヒントになると実感しました。

戦略思考入門

社内で即実践できるROI分析と戦略設計の秘訣

ROIの重要性とは? ROI(費用対効果)の考え方について学びました。私たちの社内では、案件ごとの稼働率をPowerBIなどを使って分析していますが、手元での試算も有効だと感じました。特に、自分の目の前の業務に活かすためには、小規模な試算も役立つと実感しました。 「捨てる」決断の基準は? 「捨てる」という決断については、客観的指標に基づいて行うことの重要性を学びました。例えば、ROIに基づく費用対効果が低い案件、取引先の成長率、取引規模、人件費などの数値データをもとに判断する必要があります。勘や経験に頼るのではなく、常に数値を基にした思考が必要だと認識しました。 なぜ本質を問い直すのか? 過去の手順や資料を無意識にコピペして使うのではなく、その本質を見つめ直すことが大切です。なぜこの手順が必要なのか、このデータは何のために用意しているのか、といった本質を問い直しながら作業を遂行することが、自身の作業効率を高め、さらに自身のROIを向上させることに繋がります。 トレードオフで優先すべきは? トレードオフの考え方についても学びました。「コスト・リーダーシップ戦略」か「差別化戦略」を重視するかの意思決定が重要です。バックオフィス業務においても、制度設計の際に費用対効果に注力すべきか、差別化戦略に注力すべきかの二つの視点を比較して戦略を考える機会があると感じました。戦略とは意思決定に基づいた行動計画を立てることですので、優先順位の設定と、個人と組織の視点をすり合わせることが重要です。最終的には、それらの最大化ポイントを見つけ、ブレークスルーとなる施策を検討していきたいと思います。 どのようにイシューを設定する? 作業を開始する前に、まずはイシューの設定を行います。過去の資料はあくまで参考にし、その時々の最適化を意識してアップデートを目指します。 数値で目的を明確にするには? 戦略を立てるためには、経営層とのディスカッションを通じて会社の意思確認を行い、目的を明確に引き出すことが必要です。客観的データに基づく情報を集め、それを元に判断を仰ぎます。感覚に頼らず、数値で具体的に意思を引き出す工夫を心がけます。 トレードオフの価値をどう探る? トレードオフの考え方は、相反する要素を並べることから生まれるのかもしれません。どんな「効用」があるのかという要素を洗い出す作業を今後も行っていきたいと思います。

データ・アナリティクス入門

小さな復習が未来を開く

比較の価値って何? 「分析の基本は比較」という視点を再認識しました。自分と他者、自分がありたい姿、そして現在の自分を丁寧に比較することが、より深い洞察へとつながると実感しています。また、学習においては一夜漬けややっつけ仕事ではなく、たとえ1日5分の復習でも習慣として続けることが重要だと痛感しました。特に、ビジネスの現場における影響度を考えると、その積み重ねが大切だと考えています。 原因の探し方は? 分析のプロセスでは、結果だけでなく原因を深く掘り下げる姿勢が必要です。数字に裏付けられたストーリーを構築するためには、飛びつかず、しっかりと要素を分解して検証することが求められます。やみくもな対応では、納得感や信用を得るのは難しいと感じました。 課題はどこにある? まず、フレームワークなどの問題解決の手法については、理解しているつもりでも実際の問題に直面すると活用できていない部分が浮き彫りになりました。たまたま効率化には成功したものの、その他の面では十分に実践できておらず、今後、時間のかかる業務のプロセス改善に取り組む必要があると考えています。 新知識はどう活かす? また、ABテストといった新たな知識の習得ができた点は大きな収穫でした。勉強の習慣化に向け、意識的な時間確保と無駄時間の削減に努め、受講者のコメントからも自分の表現不足を認識する機会となりました。講座終了後は、講師の授業や動画、受講者の意見を総復習し、理解をさらに深めるつもりです。 図解で見やすく? さらに、シンプルながらも資料に図を取り入れることで、情報を視覚的に整理する試みも始めています。作成技術は向上途上ですが、引き続き動画などでスキルアップを目指していきたいと思います。 仮説の不足は? 一方で、学び続ける意欲はあるものの、仮説を作成する基礎知識が不足しているため、仮説の質や数が十分でなく、次につなげることが難しいと感じました。仕事におけるレアケースの振り返りや因果関係の検討が、これからの課題であると考えています。結果だけに注目するのではなく、その背後にある原因を明らかにすることがポイントとなります。 本質をどう捉える? 今回の学びで特に印象に残ったのは、「目に見えるものにすぐ飛びつかない」という点です。大切な要素は必ずしも目に見える形で現れるわけではないという教訓を、今後の業務にも活かしていきたいと思います。

データ・アナリティクス入門

グラフと平均値で掴む分析術のコツ

グラフは何を示す? グラフの活用法とその分析時の手法について考えます。まず、円グラフは各要素の割合を確認したい場合に使用します。一方、ヒストグラムは全体のばらつきを視覚的に把握したい時に便利です。グラフを活用する際は、事前に仮説を立て、その仮説に基づいて予測データと実際のデータを比較し、深堀することが重要です。 平均値はどう使う? 分析手法としては、様々な平均値があります。単純平均はただ平均値を求める方法です。加重平均は重みを考慮して算出され、例えば東証株価指数がこの方法を用いています。幾何平均は成長率や平均何倍になるかを知りたい時に使用されます。外れ値の影響を避けたい場合は中央値を用いるとよいでしょう。また、標準偏差を利用することで、データのばらつきを把握できます。標準偏差が小さいほどデータは均一であることを示します。これに基づき、2SDルールでは95%のデータが大よその範囲内に収まるとし、5%のデータは外れ値とされます。 リスクはどう把握? 施設のポテンシャルや価格の分布を分析する際には、ヒストグラムや散布図を使うことで、戦略に対するリスクを特定できます。例えば、ポテンシャルの高い施設で高コストの外れ値がある場合、戦略的値下げの必要性を検討する余地があります。また、小さい施設で安価なコストの外れ値はベンチマークとして他施設に引き合いに出されるリスクとなる可能性があります。 医療データの精度は? 医療機器のデータ精度を分析する際、標準偏差を利用して精度の精確性を確認することができます。業界の標準として、変動係数CVが2%以下であれば精度の担保がされているとされています。変動係数は標準偏差を平均値で割ることで算出されますので、まず標準偏差を求める必要があります。特に機器の精度が外れ値を持たず、許容範囲内に収まることが求められるため、標準偏差の知識は重要です。 適正価格はどう算出? 価格交渉の際、統一グループやGPO施設カテゴリ内の平均価格やベンチマークの引き合いがあります。この際、どの「平均」が使用されているかを確認し、データを鵜呑みにせず、グラフや散布図、加重平均や中央値を用いて適正価格を示すことが重要です。 仮説はどこから? 最後に、分析に取り掛かる前に仮説を立てることが大切です。仮説に正解はありませんが、経験に基づいた想像力を活かし、いくつも仮説を洗い出すことが有益です。

データ・アナリティクス入門

思考のクセを正し、問題解決力を高める方法

問題解決のステップをどう活用する? 問題解決の4つのステップ、すなわちWhat(問題の明確化)、Where(問題箇所の特定)、Why(原因の分析)、How(解決策の立案)を学びました。私の思考のクセとして、Whatを決め打ちしてしまうことや、Howの展開に意識が向きすぎることがあります。そのため、Whatに関しては目の前の課題が全体構造のどこに位置づけられているのかを確認するよう意識しています。Howについては、Whatの構造を理解し、Where→Whyを経てしっかりと導き出すことで、数ではなく説得性と精度を高めていきたいと考えています。 A/Bテストを成功させるには? A/Bテストについては、比較検証を目的とするため、以下のポイントを理解しました。 - 複数の要素を同時に変えると検証が難しくなるため、このようなことは避ける。 - 同列で比較する必要があるため、期間・ターゲットなど条件をできるだけ揃える。 - 低コストで実施できるため、トライ&エラーを重ねて精度を上げていく。 購入者定着の課題をどう解決する? 「商品Aの購入者定着」という課題に対しては、一旦立ち止まって状況を整理しました。例えば、購入者定着を要素分解(要素集約)すると、上位階層に売上向上という課題があります。本質的な課題としては、「売上向上があり、分解すると新規と定着に分けられ、データで補足すると新規の向上が売上の変数として大きく影響する」という課題に変わる可能性があると捉え、4つのステップを視野を広げるためと、要素を絞り込んで確度を上げるために活用していきます。 広告効果の測定には何が必要? ABテストは広告の売上効果を測る際に用いたいと考えています。しかし、売上に関わる変数(広告外のプロモーションや価格など)が多いため、「広告だけの効果」を測るのが難しいです。この点についてアドバイスが欲しいです。 課題特定を円滑にするには? 現在取り組んでいる各部署の伴走案件において、上記の4ステップを課題特定に活用しています。会社上層部からの指示や慣習などから使用するデータや活用方針がある程度決まっているため、他の選択肢を持てない方もいます。そういった場合、一度立ち止まって課題の要素分解を行うよう促しています。月内に7つの案件があるため、事前に各部署の業務理解を深め、広い視野で課題を捉えることを意識して伴走します。

戦略思考入門

戦略フレームで未来を切り拓く

市場環境はどう見る? 勝負を決めるのは顧客や市場の環境であると実感しました。講義では、PESTや5Force、VRIO分析といった各フレームワークを活用しながら、環境やニーズを整理し、自社の強みや基本戦略を検討していく流れが紹介されており、戦略検討のプロセスについて具体的に理解することができました。 PESTをどう捉える? まず、PEST分析では、環境を漠然と捉えるのではなく、各要素をテーマに沿って洗い出し、その中で影響の大きいものを特定することで、どのような状況に繋がっていくのかを考察することの重要性を学びました。これにより、戦略策定に向けた有益な情報源として活用できる点が印象的でした。 5Forceはどう見る? 次に、5Force分析では、売り手・買い手の関係や新規参入、代替品といった軸で業界の現状を整理し、未来に向けた予兆となる因子を明確に洗い出す意義を再認識しました。これにより、変化する状況に対応するためのシナリオプランニングが可能になると考えています。 基本戦略を学ぶ? また、ポーターの3つの基本戦略については、競争優位の幅とターゲットの広さを軸に、コストリーダーシップ、差別化、そして集中戦略がどのように検討されるべきかを学びました。特に、一点集中には環境変化によるリスクがあるため、複数の戦略の両立可能性を意識することが大切だと感じました。 VRIOで見抜ける? 今回初めて学んだVRIO分析では、模倣困難性が重要な鍵となる点に強く共感しました。価値や希少性を含めた要素を有効に活用できる組織力が、持続可能な競争優位に繋がると理解しました。社内の暗黙知や独自の仕事の仕方を仕組み化し、共通言語・企業文化として定着させることが、他社には容易に真似できない大きな強みになると考えています。 未来戦略はどうする? これらの学びを踏まえ、改めて高品質なモノ・コトの提供に向け、自分たちの顧客像を具体化し直す必要を感じています。企画開発からアフターサービスに至るまで、直接・間接的に関わる領域全体を俯瞰し、自社の強みや差別化の方向性をVRIO分析など各フレームワークを活用して検討していくことが重要だと思います。現状の競合他社との比較に留まらず、業界全体を意識してシナリオを複数想定し、上位層も納得できる戦略の選択肢を示せるようにしていきたいと考えました。

データ・アナリティクス入門

対概念で拓く経営戦略の新視点

対概念の意義は何? 対概念とは、ある概念に対して反対または対照的な意味を持つ別の概念を考えることで、物事をより明確に理解し議論の幅を広げる手法です。問題解決に取り組む際は、原因をプロセスに分解する方法、複数の解決策を根拠をもって絞り込む視点、A/Bテスト方式を活用した実践検証、そしてデータ分析を組み合わせた段階的な課題抽出と検証の流れが重要となります。 M&Aリスクはどう考える? 例えば、M&A案件のリスク評価と意思決定においては、ポジティブな要素であるシナジー効果と、ネガティブな統合リスクを対概念として捉え、財務リスク、組織文化、オペレーションといった要因に分解して考えます。各リスク要因を定量化することで、M&A後の成功確率を高めるためのより正確な判断が可能となります。 統合戦略はどれが最適? また、企業の経営戦略策定、特にM&A後の統合戦略においては、段階的統合と急速統合という二つのアプローチを検討し、A/Bテスト方式でそれぞれの効果を比較します。統合プロセスの進捗データや業績、従業員満足度といった具体的な指標をもとに、どちらの戦略がより良い成果を生むかを実証的に評価していきます。 リスク評価の秘訣は? さらに、リスク評価のためのフレームワーク作成では、過去の成功事例や失敗事例をデータベース化し、財務、組織文化、オペレーション、市場環境といった指標を基にリスク評価シートを作成します。これにより、各案件ごとのリスクが客観的に評価され、精度の高い投資判断を導き出すことが期待されます。 定量化結果は何? 続いて、データ分析を用いた定量化では、財務データや従業員エンゲージメント、企業文化の適合度を測る指標を設定し、回帰分析や相関分析を活用します。特に、文化の不一致が従業員の離職率に与える影響などを数値化することで、過去のM&Aデータから成功パターンや失敗パターンを明らかにし、これを次の意思決定に生かすことが可能となります。 結果の信頼はどう確保? 対概念とA/Bテストを通じて物事を深く理解しようとする姿勢は非常に評価できます。今後は、どのような状況で対概念を活用するのが効果的か、またA/Bテストで得られた結果の信頼性をどのように確保していくかといった点について、さらに思考を深めながら実践につなげていくことが求められます。

データ・アナリティクス入門

目的を導くデータの羅針盤

最初に何を明確に? 分析に着手する際、何から手をつけてよいのかわからない状態でしたが、まずは「目的」を明確にし、何を知りたいのか、また改善点につなげるにはどうすればよいのかを意識しながらデータと向き合うことが大切だと実感しました。その上で、データ分析の前段階として、比較対象となる条件を整理し、どの条件や項目を設定するかを精査することが、結果の精度を高める鍵であると理解できました。 整理方法はどうする? 授業からは、細かい点まで明確に比較できるように各要素を分けて整理する方法や、項目を一覧化して理路整然と進める手法を学びました。また、その調査結果の意味や期待される効果について問いかけながら項目を設定する重要性、そして各データ項目ごとの感覚の違いを補うために他のデータを参照する必要性についても示唆を得ました。さらに、数字を加工して割合を算出しグラフ化する際は、情報の性質に応じたグラフ(要素間の割合には円グラフ、上下の数値比較には縦棒グラフ、要素間の比較には横棒グラフなど)を効果的に用いる工夫が求められると学びました。場合によっては、実数そのままで比較したほうが効果的なケースもあるという点も印象的でした。 ビッグデータをどう見る? また、スモールデータとビッグデータの違いに触れ、ビッグデータを扱う際には「クレンジング」に注意し、類似性の高いデータを抽出することで、過去のデータを新たな価値に変えていくプロセスの重要性も認識しました。データ分析は、目的と仮説に基づいた切り口の設定、データ収集、加工、発見、そして結論へのプロセスを着実に踏むことが不可欠で、見えている加工データと状況や根拠に基づいた解釈とを組み合わせることで、より説得力のある分析結果が得られると感じました。 広報戦略はどう考える? 具体的な広報戦略を考える際には、施策を大項目から小項目へと段階的に設定し、戦略の目的に沿ってPRのアイディアを複数仮定しました。その上で、各ツールの選択肢や条件を一覧化し、データを当てはめて比較検討することが効果的であるという実践的なアプローチも印象深かったです。 グループ作業はどう? グループワークでは、見えている加工データに状況や他の根拠・解釈を加えて分析する手法が強調され、その具体的な組み合わせ方や実例について、さらに深掘りして聞いてみたいと感じました。

クリティカルシンキング入門

相手に伝わる視覚化の極意

伝えたいことは? 今回のテーマは「相手の理解を促進させる視覚化」でしたが、まず大切なのは、相手に何を伝えたいのかを明確に決めることだと感じました。視覚化する上で使える手法には、グラフや文字、スライドなどがありますが、できるだけシンプルにしながらも最大限のメッセージを伝える工夫が必要だと思いました。具体的な学びは以下の通りです。 グラフはどう使う? まず、グラフについてです。時系列データには折れ線グラフや縦棒グラフ、データ量の比較には横棒グラフなど、それぞれの特徴を活用することが重要です。 文字はどう工夫? 次に、文字についてです。自分はカラフルになりがちですが、強調したい文言が過剰にならないよう注意したいです。また、使う色の中身も意識しながら差別化を図ることが大切です。 スライドで誘導は? 最後に、スライドについてです。メッセージの順番は左から右、上から下に配置し、強調したい箇所には矢印を入れて視点を誘導する工夫が効果的です。 学びはどこに? 学んだことは、主に次の2つの場面で活用できると思います。 研修資料の工夫は? まず、社内研修設計におけるスライド作成です。現在、マネージャー候補向けの研修設計を考えており、スライドを作成する必要があります。研修の難易度が上がり多くの資料を収集する分、スライドはできるだけシンプルにする工夫をしたいと考えています。 提案資料はどうする? 次に、経営陣に提案する人事資料作成です。現在、週に1~2回、経営陣に人材戦略に関する提案をしています。その際に資料についていくつか質問を受けることがあるので、資料を一目で理解できるよう改善していきたいと思います。 行動計画は何だろう? これらを活用するための行動計画は以下の通りです。 研修計画のポイント? 社内研修設計におけるスライド作成では、情報の順番とメッセージの順番を一致させ、グラフを取り入れる際にはできるだけ一つにまとめ、フォントのカラーを意識的に差別化することを考えています。 資料改善の注意点は? 経営陣に提案する人事資料作成では、基本的なことですが、グラフにタイトルを必ずつけ、適切なグラフかどうかを常に確認し、データが時系列なのか、要素なのか、変化を表現したいのかを考慮することが重要です。

データ・アナリティクス入門

データ分析で未来を築く!ナノ単科の意義とは

なぜ分析の目的を見失わない? まず、「何のために分析するのか」という「目的」を見失わないことが重要です。その上で、その目的を果たすためにはどのようなデータをどのように分析すれば良いのかという「仮説」を立てることが必要です。その仮説に基づき、必要なデータを収集し「意味を読み取る」ために適切にデータを加工し、その分析結果から新たな発見を導き、より良い意思決定を行うことが求められます。 データビジュアル化の役割とは? データ分析の一連のプロセスにおいて「意味を読み取る」ためには、代表値である平均値および中央値、ばらつき度合いを分布として示す標準偏差を用いた全体像の把握が重要です。また、それらを一目で容易に把握するためにデータのビジュアル化も欠かせません。そして、ビジュアル化されたグラフを見る前に、それまでに得た定量情報や定性情報をもとに自らの解釈と仮説を立て、その解釈・仮説と実際のデータを比較するアプローチを繰り返すことで、分析を深めていきます。 データ分析の順序を守るには? いざデータを前にすると、「仮説を立ててデータを見る」のではなく、「データ同士を比較して仮説を立てる」という癖があることに気づきました。この順序を間違えると意味がなさず、分析を深堀りできません。自然と正しいプロセスを踏むことができるようになるまで、意識して練習を繰り返したいと思います。 予算策定に活かす分析手法は? 直近では、予算策定にこのアプローチを使います。過去の売上や原価をもとに、標準偏差、加重平均、幾何平均、中央値を使ってより確からしい代表値を出し、定性情報も加味して来期の予算を策定します。この際、「仮説を立ててデータを見る(仮説との比較)」ことを意識して取り組みます。また、その代表値にした理由や定性情報の扱いについて第三者と共有し、対話を重ねることで、納得性のあるものとして示すことができるように努めたいと考えています。 今後意識する改善点は? 今後、以下の点を意識して取り組みます。 1. 標準偏差、加重平均、幾何平均について再度勉強し、特徴を深く理解する。 2. 「結論ありき」や「経験と勘」に頼らず、データ分析のプロセスを一つずつ丁寧に踏む。 3. 定性情報を「落としどころ」や「決め打ち」の要素として扱わないように意識する。

データ・アナリティクス入門

数字が語る!原因分析のコツ

原因分析のポイントは? 「why:原因を分析」という問題解決のステップについて学び、実際の業務に活用するためのヒントを得ることができました。原因分析では、問題がなぜ発生したのかデータを基に追及し、原因が特定できた後に解決策を検討するという流れを確認しました。 プロセス分解の極意は? この授業で得た学びは主に2点あります。まずは、データをプロセスに分けて考える方法です。課題では、ウェブサイトの広告表示から体験レッスンへの申込に至る一連のプロセス(広告表示→広告クリック→申込)の各段階のデータを比較し、同じ経路を辿った中でどこで数値が落ちているかを検証しました。比較する際は、各プロセスの分母が異なるため、率で示す点が重要です。率が低いプロセスに問題があると考え、具体的な原因を探る有効な手法だと実感しました。この方法により、どこから改善に取り組めばよいのかが明確になり、必要なデータの選定も容易になると感じました。 原因思考の広がりは? 次に、原因を考える際は思考の幅を広げる必要があると学びました。フレームワークの一つとして、対概念という視点を活用する方法があります。たとえば、「自社の戦略に原因がある」と「自社の戦略以外の要素に問題がある」という二つの視点から原因を考えることで、一方向への固執を避けることができます。この手法は、原因の決め打ちを防止するのに非常に有効だと感じました。 遅延の要因は? 実際の業務で、業務の遅れが他部署に影響を与えている場合、まずはその業務を複数のプロセスに分解し、どの段階でボトルネックが発生しているのか、数字を元に比較することが有効だと考えます。原因追求においては、MECEの考え方も必要不可欠です。さらに、原因に関わる要素が明らかになったら、それ以外の可能性も併せて検討することで、一面的な見方に陥らずに対策を練ることができると実感しました。 学びをどう今後活かす? この学びからは、事象には必ずプロセスが存在し、分解して比較することで原因を特定できること、そしてよい事例についてもプロセスの整理が応用可能であることを改めて確認しました。今後は、問題だけでなく成功事例にもプロセスの視点からアプローチし、より幅広い視野で原因と対策を考えられるよう努めていきたいと思います。

「比較 × 要素」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right