アカウンティング入門

数字で読み解く企業の秘密

財務構造はどう? 総合演習では、ZoomやNetflixの損益計算書、さらにはANAとZOZOの貸借対照表を比較することで、事業内容によりどの部分に負荷がかかり、どのような財務構造を持つのかが大きく異なることを実感しました。 費用割り当ては何が違う? ZoomとNetflixの比較では、各社のビジネスモデルの違いが費用の配分に明確な差として現れており、それぞれの事業活動をイメージしながら、どの項目にどれだけのコストがかかっているのかを俯瞰的に捉えることができ、非常に興味深かったです。 資産構成はどうなってる? また、ANAとZOZOの貸借対照表を見比べると、固定資産が全体の60%(うち有形固定資産が70%)を占める重資産型の構造と、固定資産が20%に留まり流動資産が高い軽資産型の特徴が対照的に表れていました。これにより、どのようにお金を使っているのかが明確になり、数字から企業の仕組みを読み解く面白さを改めて感じました。 月次の動向はどう? さらに、総合演習の設問9でも触れた通り、所属する企業では会計ソフトを利用して、月次ベースで損益計算書と貸借対照表を確認する取り組みを行っています。年単位の大まかな動きではなく、月ごとの変化を捉えることで経営状況をより具体的に把握し、ミクロな視点から状況を把握しようとしています。 損益計算の見取り方は? 損益計算書においては、売上、売上総利益、営業利益、経常利益、税引前当期純利益、そして当期純利益といった指標を整理し、費用の使われ方や利益構造を視覚的に理解できるよう工夫する予定です。 資金分析はどうなる? 同様に貸借対照表も、流動資産、固定資産、流動負債、固定負債、純資産に分類し、「どのようにお金を調達したのか」と「どのように使ったのか」という両面から企業の資金繰りを分析し、今後の意思決定に役立てていこうと考えています。

データ・アナリティクス入門

データ分析でビジネスの謎を解く方法

売上判断で何を比較すべきか? 売上の良し悪しを判断するとき、「大きい」「小さい」「高い」「低い」などの表現を用いる場合、必ず何と比較しているかを示すことが重要です。この比較によりデータの加工を行うと、さらに新たな視点が見えてきます。 代表値とデータ分布をどう見る? まず、データの特徴を一つの数字に集約して捉えます。代表値や平均値を見るとき、その数字だけで判断せず、データの分布も合わせて考慮する必要があります。 データ視覚化の重要性は? 次に、データを視覚的に捉えることが重要です。データをグラフ化、ビジュアル化することで、データ間の関係性を視覚的に捕えることができ、特徴の把握や解釈、仮説立案が容易になります。目的に応じて適切なグラフ(円グラフやヒストグラムなど)を選ぶことで、比較・分析がしやすくなります。 数式で関係性を捉える方法は? さらに、数式を用いて関係性を捉える方法もあります。代表値として単純平均、加重平均、幾何平均、中央値、そして散らばりを示す標準偏差を利用します。単純平均だけでなく、他の代表値もしっかりと使いこなすことが求められます。 仮説検討で何を探る? これらの手法を用いて数字を算出し、比較することから仮説を立て、傾向や問題点を見つけるには、個人の経験や知識、世間の動向やトレンドを把握することが重要です。月次報告書にこれらの比較方法を取り入れ、仮説の立案までをセットにし、分析報告をまとめることが目標です。 来週火曜日の報告までにすべきことは? 来週火曜日に役員へ報告する資料が必要です。この資料は、単に実績を表としてまとめるだけでなく、そこから読み取れる傾向も分析し、上司に報告する内容にしたいと考えています。仮説については、実際の現場の責任者とも会話し、その仮説にどれほどの差異があるかを検証し、次回以降の仮説検討の際に参考にしていきます。

クリティカルシンキング入門

小さな視点、大きな発見

データはどう見える? 一次データだけでは見えてこない傾向があるため、データをさらに細かく分け、グラフなどのビジュアル資料で確認することが重要です。 切り口の意味は? 刻み幅や意味のある切り口に基づく分け方を意識し、仮説を立てながらデータを整理することで、分け方によって異なる結論が導かれる点に注意が必要です。 全体像の正確把握は? 分解して検討した結果、特徴的な傾向が浮かび上がったとしても、それが全体を示すものではありません。すぐに結論を出さず、自分自身を疑う姿勢を持ち、思考の制約にとらわれないよう心がけることが求められます。MECEの考え方を活用しながら、全体を部分に分ける階層分解、売上を単価と数量に分ける変数分解、そして業務プロセスごとに分けるプロセス分解の手法を上手に使い分けるとよいでしょう。 分析の焦点は? 例えば、変数分解を用いてメンバーそれぞれの売上傾向を分析する際には、まず優れた成績の例と比較して単価や数量のどちらに課題があるかを明確にします。単価に問題がある場合は、コンタクト先を階層分解してどの層へのアプローチが不足しているのかを検討し、販売数量に問題がある場合は、プロセス分解を通じてどの業務プロセスに時間がかかっているのかや課題が潜んでいるのかを明確にすることが効果的です。 販売戦略の再考は? また、商品販売では、階層分解を活用して販売好調な商品の傾向を把握することが重要です。購入者を細かく分けることで、より明確なターゲット層を設定し、戦略の見直しに役立てることができます。 成果と速度の両立は? 実際の業務では、質の高い成果とともにスピードも求められます。トレーニングの積み重ねによって両立が可能だと考えていますが、実際の業務でどのように質とスピードを両立しているか、具体的な方法があればぜひお聞かせいただきたいです。

データ・アナリティクス入門

一歩ずつ探す解決のカギ

課題発見はどうする? 分析の際は、プロセスごとに分けて検討することで、どの段階に課題が潜んでいるのかを見つけやすくなると感じました。原因の仮説を立てる際には、関連性が高いと思われる要素だけではなく、そうでない可能性も含めて「対概念」を活用し、視野を広げることが有効です。 解決策の比較は? また、複数の解決策を検討する時は、条件をなるべく同じにした状態で両方の施策を試す「A/Bテスト」が効果的だと思います。各プロセスごとのデータを丹念に分析しながら、仮説を練り、実践的に検証していくことで、問題解決の精度を高めることができると実感しました。 問題の本質は何? 問題解決においては、まず「What:問題は何か、どの程度の問題か」、次に「Where:問題はどこにあるか」、その次に「Why:問題はなぜ発生しているのか」、そして「How:対策はどうすべきか」と、手間を惜しまずにしっかりと向き合うことが大切だと考えています。 思い込みは避ける? 例えば、あるサービスの売上が低下した場合、その原因をプロセス別に網羅的に仮説することで、思い込みや決めつけを防ぐことができます。短絡的に一つの原因で結論づけず、見落としがちな小さな要因にも目を向けることが、より正確な原因特定につながるでしょう。 他の要因は何? さらに、売上低下の原因が購入者数の減少だと仮定した場合、すぐに「売価の上昇」が原因と結論づけるのではなく、もし売価の変動が原因でないとすれば、他にサービス内容の悪化など潜在的な要因があるのではないかと、幅広い視点で検討することが重要だと感じました。 成果検証はどう? 最後に、複数の施策を同時に実稼働させる「A/Bテスト」についてですが、一人の判断だけに頼らず、実際の成果がどの程度得られるのか、具体的な事例を交えて効果を検証してみたいと思います。

データ・アナリティクス入門

データ分析の要点と活用法を深堀りするコツ

Week6での気付きは? Week1から学んでいたことが、ようやくWeek6で腑に落ちた感じがしました。 仮説思考の重要性とは? ライブ事業では、ストーリーを立てて分析する方法を具体的に学びながら復習することができました。 よい分析のためには「仮説思考」が重要です。まず目的を明確にし、問いに対する仮説を立てます(例:打率ではなく失塁率が高い選手が原因ではないか)。次にデータを収集し、その仮説をデータで検証します。仮説がデータにより証明されなければ、新たな仮説を立て直します。 データ収集はどう進める? データ収集の手段としては、検索エンジンや公開データ、アンケートやABテストなどがあります。 分析を進める際の5つの視点として、以下の点が重要です: - インパクト:影響度の大きさ - ギャップ:何がどのように違うのか - トレンド:時間的な変化の傾向 - ばらつき:分布に隔たりがあるか - パターン:法則性があるか WEBマーケティング分析のポイント グラフ化のステップとしては、まず仮説やメッセージを明確にし、比較対象を決めて、適切なグラフを選びます。 WEBマーケティングの売上に繋がりやすい顧客の分析には、以下の点を考慮していきます: - 企業規模や購入製品群(リピート購入か、多種製品群を購入しているかなど) - 地域による差異 - 製品の月別の差異 - 顧客情報の獲得経路の有効性 これらをMECEに分解し、先入観を避けつつ仮説検証を進めます。 来月以降、少し余裕ができるので、上記の分析を進め、WEBサイトの改善を図ります。ロジックツリーの活用で細かく分解しつつも、Week6の講義にあったとおり、目的に必要な分析範囲を見極めたいと思います。また、メンバーに説得力のあるプロセスを踏み、説明することも重視したいと思います。

データ・アナリティクス入門

データに基づく問題解決法を学んだ充実の時間

分析の基本を理解するには? 講座全体を通して学んだことのポイントは以下の通りです。 まず、分析についてです。分析とは、比較することと同義です。そして、問題解決のプロセスにおいては「What→Where→Why→How」の順序で進めることが重要です。平均値を見る際には、そのばらつきにも注意を払いましょう。対策を決定する際には固定的にせず、柔軟に対応することが求められます。また、生存者バイアスに影響されないように注意し、生存者と非生存者の両方に目を向け、データの分布全体を分析する必要があります。結果を他人にわかりやすく伝えるためには、データのビジュアル化が有効です。 戦略策定で役立つ方法は? 次に、下半期の戦略策定です。クライアントの下半期戦略を作成する際に、講座で学んだ分析のフレームワークを活用することができます。 データをどう活かすか? さらに、分析結果の資料への落とし込みについてです。クライアントの意思決定を支援することを目的として、データの見せ方に工夫を凝らします。 データ分析の効率化を目指すには? データ分析のやり方の向上も重要です。AIなどのツールをうまく活用することで、精度の高い分析を短時間で実施します。必要最低限の情報をもとに素早く答えを出して実行する。このサイクルを多く回すことで、最短で最大の効果を生み出すことが可能です。 効果的なデータ伝達法は? 最後に、データ分析結果の伝え方についてです。対峙する相手は数値分析を本職としていないことが多いので、単なる数値の伝達だけでは不十分です。データを可視化し、クライアントの課題を踏まえたフォーマットに変換します。クライアントが知りたいのはビジネス上のインパクトです。そのため、ビジュアルで見せたり、ビジネス言語で表現して、一目で理解できるようにすることが重要です。

クリティカルシンキング入門

データ分析のコツで業務効率アップを実感

数字分析で見える傾向は? 数字をいくつかのパターンでグラフ化し比較すると、傾向や特徴がつかめることがわかりました。知りたい情報に対して、意図的に複数の分析軸が必要であることも理解しました。特に一番の気づきは、一つの分析結果だけを見てすぐに結論を出すのは危険だということです。急ぐあまりに、ついやってしまいがちですので気を付けたいと思います。 分解時の注意ポイントは? また、切り口を考える際のポイントとして、全体を定義したうえでモレなくダブりなく分解していくことが重要だと感じました。意識してチェックしていないと、歪みが出ることに気付けません。 課題の本質をどう見抜く? 自分の業務では、お客様アンケートなどを整理する際の切り口を設定するときに使えると思いました。さらに、原因不明な状態で課題改善を依頼された際にも有効だと感じます。例えば、上司から「この課題はおそらくこの辺に原因があるからこの方向性で解決してほしい」と相談され、現場では「ほんとの原因はそこではないと思う」という意見の乖離があった際、どのように調整すればよいか悩むことがあります。そのようなときに、要素分解を用いて課題の本質を明らかにすることができると思いました。 精度の高い分析へ向けて 現在推進しているサイトのUI改善は、ヒアリングを中心に改善施策を検討していますが、今一度データの分析を掘り下げてみたいと思いました。その際に以下の点を実施しようと思います。 - 切り口を複数用意するために、分析に必要なデータを多く収集する - 手を動かして分解する - どんな切り口が分析に役立ちそうか関係者にもヒアリングしてみる - モレなく、ダブりなくの視点で問題ないか、分析の切り口を周囲の人と意見を聞き確認してみる 以上の点を意識して、より精度の高い分析を行いたいと思います。

アカウンティング入門

ビジネスの心臓部を深掘る学び

P/Lの基礎はどう見る? 先週、P/L(損益計算書)の基本的な理解が大切であると学びました。特に経常利益について、これは持続的に利益が出るかどうかを測る指標であり、本業の儲けに加えて財務活動での収益や費用が常に発生するという基本的な認識を持てたことが、私にとって大きなプラスとなりました。 原価率はどう変化? 次に、売上原価率について、「原材料費が高くなっているのか、それとも原価率が高い商品が売れているのか」といった視点が学びとなりました。売上高が伸びた際には、原価率の変動原因を細かく見て、売上を形成する製品に基づいた戦略を立てることが重要だと感じました。また、当たり前のことではありますが、販売価格が低ければ原価率が上がる(クーポンによる安売りなどが原因)という点にも気付かされました。事業計画を達成するためには、利益を確保しつつ売上を伸ばすことが重要であると再確認しました。 取引先のP/Lって? そして、実際に取引先や競合他社のP/Lを読み解くことに挑戦したいと考えています。具体的には、営業外収益や費用がどの程度あるのか、売上原価率が企業や年度ごとにどのように変化し、何がその原因であるのかを理解し、それが戦略にどのように結びついているのかを把握したいです。また、新聞で最終利益が報じられた際に、売上総利益、営業利益、経常利益の中でどこが影響してその結果が生まれたのかを確かめたいです。 IR活用は確実? これを実践するために、11月に決算が発表された取引先企業のIR(インベスター・リレーションズ)を確認し、売上総利益、営業利益、経常利益の各利益率を同業界の平均や他社と比較することを毎週行いたいと考えています。この取組は、異なる業界である建設、エネルギー、人材業界から各1社ずつ選び、競合他社も含めた計6社を対象としています。

アカウンティング入門

P/Lから学ぶ経営のコツ

売上と利益は何を見る? 売上から原価を引いたものが利益となり、P/Lでは売上や利益に注目するとともに、他のデータと比較することでトレンドや売上高と利益のギャップなどが見えてきます。 ビジネスの核心は何? ビジネスを考える際、根幹をなすのはビジネスモデルであり、Core Valueと言えます。ビジネスモデルにはそれぞれストーリーがあり、P/Lを読む際にもその基本となる考えを頭に入れておくことが重要です。さらに、何か施策を実行する際には、Core Valueに一貫した行動を取らなければ、ビジネスモデルが崩れる危険性があります。 KPIはどう活かす? また、P/Lを意識してビジネスモデルやCore Valueを理解することは、日常業務の評価にも役立ちます。たとえば、KPIはビジネスモデルやCore Valueを反映しているか、実際に価値を生み出しているかを判断する一助となります。KPI改善のためのアクションを検討する際も、これらを踏まえた一貫性のある取り組みが求められます。 事業比較の意味は? あるケースで、2つの事業のP/Lを比較してみたところ、ある事業は利益が多いものの、売上に対する利益の割合は低く(約2.59%)、一方では利益率が高い(約2.86%)結果となりました。長期的な視点で考えると、高品質な調度品や内装を維持するためには定期的な更新が必要で、その際には特別な費用が発生する点に留意しなければなりません。前者では更新費用が比較的少なく済むと想定されるため、この条件下では後者のビジネスモデルの方が長く続く可能性があると感じました。 戦略評価はどうする? このように、P/Lを通してビジネスモデルやCore Valueを理解することは、戦略の策定や日常業務の評価において非常に重要だと実感しました。

マーケティング入門

売れる製品を見抜くための分析法の習得

イノベーション普及要因とは? イノベーションの五つの普及要因というフレームワークを通して、既存の製品やこれから開発する予定の製品について分析することで、何が売れるか、何が売れないかの要因を把握できることを学びました。また、ターゲットとするセグメントの顧客がどのような考え方をするのかを正確に理解することの重要性も学びました。 市場分析の重要性は? セグメントにおいて、自社が本当に勝てる市場なのかを分析することも重要です。ただ母数が多いだけでは意味がなく、多様化した市場の中で限られたリソースをどのように使って売上利益を最大化できるかを考える必要があります。さらに、ネーミングについても顧客が求めているものとのギャップが生じないよう注意する必要があります。 普及条件の適用方法は? 自社の製品や今後開発予定の製品を、イノベーション普及の五つの条件に照らし合わせて不足している要因を分析したいと思います。例えば、自分が担当している産業用コネクタにおいては、マーケットシェアが高いものと低いものがあります。それらを比較することで見えてくるものがあると考えます。 アジア市場での戦略は? 現在、攻めようと考えているマーケットがセグメント上正しいのか、本当に勝てる市場なのかを分析したいと考えています。具体的には、日本以外のアジア地区への拡販計画を立てているが、自社にとってそこが勝てる市場なのかをしっかりと分析したいと思います。 比較分析で見えるものは? まず、担当している製品におけるイノベーション普及の五つの条件がどのようになっているかを確認し、分析することが重要です。売れている製品と売れていない製品の比較を行います。次に、セグメント分けを行い、勝てる市場がどこなのかを改めて考え直す必要があります。

戦略思考入門

業務効率化のための捨てる勇気

戦略で捨てるのは? 戦略において、捨てることが重要な場合があります。そのポイントは以下の3つです。 利便性の真意は? 1つ目は、捨てることが顧客の利便性を向上させる場合があるということです。これは、自社のコア事業に全力を注ぎ、高い品質を追求することで実現します。頭では理解できても、実行するには勇気が必要な戦略とも言えます。 営業投資はどう見る? 営業に関しては、投資対効果が高いものから始めることが重要です。評価基準を数値化することで、判断がより明確になると感じました。 今の業務はどう? 現在の業務において、これらのポイントを振り返ってみました。 問い合わせ対応は? 1. 顧客の利便性を増すために捨てることについては、問い合わせ対応に多くの時間が割かれているため、これを既存の問い合わせ窓口に集約できないか検討しています。 委託業務は見直す? 2. 惰性に流されないためには、委託している業務の見直しが必要です。より専門性の高い業者に業務を任せるか、専門性が求められる部分を切り出して他の業者を検討することを考えます。 専門分野は任せる? 3. 専門的なことは専門家に任せるという考え方ですが、私はこの考えをかなり実践できていると思います。会社内でもこの考え方が浸透しており、自社内だけで問題を解決しようとしない姿勢が取られています。 改善策は何かな? 問い合わせ内容の分類を行い、既存窓口で対応可能なものについては問い合わせ先を変更することを考えています。また、業務委託内容を詳細に見直し、専門性が必要なものと一般的に行える作業を分類します。複数の派遣会社に求められるサービスの構築を相談し、見積を取得して現行の業務委託費用と比較可能な資料を作成します。

リーダーシップ・キャリアビジョン入門

キャリアアンカーで見つける自分らしさ

キャリア診断はどう? 今回学んだキャリアアンカーですが、自分自身の診断結果を見ると「経営管理コンピタンス」が最も高く、続いて「奉仕・社会貢献」と「生活様式」にも比較的高い傾向が見られました。現状とある程度合致していると感じる一方、評価にバイアスがかかっている可能性も否定できません。本来であれば他社からのインタビューを交えた評価が理想ですが、周囲にキャリアアンカーについて詳しい方がいないため、今後は私自身がアウトプットを行い、知識の共有と業務への活用に繋げたいと考えています。 業務変化はどう見る? キャリアサバイバルに関しては、各部署で過去に定めた職能要件などが一定の基準となっているかもしれません。しかし、生成AIの登場により業務の処理方法は日々変化しており、その都度最新の技術情報をアップデートしていく必要性を感じています。自分自身の軸や価値観をしっかり把握し、今後の5年、10年を見据えた際に、現在何をすべきかを改めて考える必要があると実感しました。 キャリア研修はどう? また、看護部門のキャリア研修ではキャリアアンカー診断がすでに実施されているため、事務部門においてもキャリア研修の一環としてしっかりと取り入れることができればと考えています。さらに、キャリアサバイバルに必要な知識やスキルについては、既存の職能要件書を基に、各部署の業務習得や今後のスキル向上に役立てることが望ましいと感じました。 面談はどう進む? 部下とのキャリア面談を実施する際に、もし自分自身のキャリアに対して迷いや不満(転職の検討など)がある場合、良い面談を行うのが難しくなるように思います。実際にそのような経験があった方がいらっしゃれば、どのように対応されていたのかをお聞かせいただければ幸いです。
AIコーチング導線バナー

「比較 × 高い」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right