データ・アナリティクス入門

比較で見つけた戦略のヒント

同条件で比較する? 分析とは、同じ条件下での比較を行うことだと思います。たとえば、「Apple to Apple」の視点で比較を行うことで、分析の目的やゴールが明確になり、結果の精度も向上します。また、分析を進める際は、仮説を立てることで、目的外の迷いに陥らずに進められると感じています。 ブランディングはどう? 現在、私はプロダクト開発とコンテンツ企画・運営に携わっており、いずれも競合が存在する中で、自社のブランディング戦略を考える必要があります。ただ、現状ではプロジェクトオーナーの感覚や経験に頼る部分があり、より現実的かつ客観的な視点を取り入れる余地があると感じました。 課題整理は進んでる? そこで、まずは各プロジェクトの目的とゴールを再整理し、現時点での課題を明確にすることが重要だと考えています。その上で、適切なフレームワークやツールを活用した分析を行い、より精度の高い戦略策定を目指していきたいと思います。

データ・アナリティクス入門

データでつかむ共感と納得

データ分析の意義とは? 「分析とは比較なり」と分かっていても、その意味を他の人に伝えるのは別の課題です。結果的に、データ分析の意味とは何を目的にし、どこに活かすかであると改めて実感しました。また、適切なデータ選びと結果の見せ方も理解に大きく影響を与えることを痛感しました。 分析結果をどう伝える? これまでのデータ分析は、自分が次の戦略を考えるために、自分が理解することを前提にしていました。しかし、考えたプランが良くても、納得や共感を得られなければ意味がありません。多くの人に理解される分析を心掛けるべきであると感じています。 経営戦略に重要なデータ選び データ分析のプロセスを含めて、しっかりと説明できることが重要な前提です。正しい経営戦略を考えるためには、どのデータを重視し、補足できるデータを選ぶかが鍵であり、会社の進むべき方向性を理解してもらうために、方向性を一致させる納得感の高いアウトプットを意識します。

データ・アナリティクス入門

データ分析で気づく改善の一歩

データ分析ってなぜ? 全体を通してデータを分析する重要性を改めて実感しました。今まであまり意識していなかったMECEの考え方―漏れや不足がない状態―について、比較の段階があることやそれぞれの段階で分かる情報の違い、そして明確な発見があるという点が印象に残りました。 着地見込みの工夫は? また、着地見込みを作成する際、単価を中央値で表示するなど細かい部分にも応用できる点を体験でき、シミュレーションに積極的に取り入れていきたいと感じました。今後は、シミュレーション結果や予算、実績とのGAP分析にもこれらの方法を活用し、より精度の高い検討を行いたいと思います。 GAP検証で何が起こる? さらに、シミュレーション実績との比較をもとにGAPの仮説検証を実施し、次の期には軌道修正が図れるよう動いていく予定です。まずは表やグラフを作成して比較し、そこから差異分析を行って仮説を立て、改善に結びつけていきたいと考えています。

マーケティング入門

顧客視点での革新:実践で得たフレームワークの力

顧客目線を忘れないためには? 顧客目線であることは、企業活動として当然のことであると思えますが、競合を意識するあまり、顧客ニーズを無視してしまうことがしばしばあります。そのため、適正なフレームワークの使い方を学び、常に高い視点で物事を捉える術を養いたいと考えています。 顧客との対話が生む成果とは? 自身の取り扱う製品が顧客にとってどのようなベネフィットがあるのか、競合品との差別化が顧客ニーズを満たしているのかを検証するために、実際に顧客と対話を重ねます。また、メッセージが顧客にどれだけ響いているのかも再確認します。 イノベーション課題を解決するには? イノベーションの普及要件として比較優位、適合性、わかりやすさ、試用可能性、可視性の観点で自社の製品を考えてみると、比較優位と試用可能性、可視性はあるが、わかりやすさと適合性が課題であると認識しました。これらの課題をどう解決するかを検討する必要があります。

データ・アナリティクス入門

数字で解く最適ログイン戦略

視覚化はなぜ大事? 数字に集約し可視化することの重要性を改めて認識しました。代表値と分布に注目し、平均値や標準偏差の概念を意識することはもちろん、場合によっては単純平均ではなく適切な重みづけを行う必要があることも理解しました。 どうユーザー呼び込む? ログイン率向上のためには、プッシュ通知を活用したユーザー誘導施策が有効だと考えています。具体的には、アプリのログイン時間帯とユーザーの年代を比較し、どの時間帯にプッシュ通知を設定するのが適切かを検討していきたいと思います。 データは見えていますか? まずは、アナリティクスで必要なデータが可視化できているか、ログイン時間帯と紐づくユーザーの年代ごとのデータが抽出できるかを確認します。その上で、データの分散状況を把握し、最も効果が高いと思われる時間帯を優先して施策の検討を進める方針です。

アカウンティング入門

定率か定額か?経営のヒント

減価償却の選択基準は? 減価償却の説明の中で定率法と定額法の使い分けについて疑問に思い、調べてみました。定率法は初年度の償却率が高いため、初年度の利益を圧縮する効果がありますが、計算が複雑になるという特徴があります。一方、定額法は均等に償却していくためわかりやすく、計画が立てやすいメリットがあります。どちらの方法をどのシーンで具体的に使い分けるのか、実例を元に学んでいきたいと感じました。 企業戦略の検証方法は? また、同じ業種や競合他社同士のB/Sを比較しながら、それぞれの企業の戦略や価値の源泉を逆算し、仮説を立てることに興味を持ちました。IR資料などを照らし合わせながら、その仮説が正しかったかを検証することで、企業の経営戦略に対する理解を深められると考えています。

データ・アナリティクス入門

比較で磨かれる成長のヒント

分析の目的は何? 分析する目的を明確にすることが大切だと感じました。また、分析は単独で行うのではなく、比較を行う意識を持つことで、勝手な判断による自己評価を避けることができると思います。何を基準に良し悪しを判断するか、きちんと意識する必要があると再認識しました。 実績の評価はどう? 営業という仕事では、実績と活動量が重視されます。実績の評価は、単に個人目標の達成度だけでなく、他者との比較によりその良し悪しが明らかになる点を考慮する必要があります。このような考え方を取り入れることで、従来とは異なった質の高い振り返りが可能になり、今後の成長につながると感じました。
AIコーチング導線バナー

「比較 × 高い」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right