データ・アナリティクス入門

仮説検証で未来を切り拓く一歩

なぜ仮説検証が必要? 今回の振り返りを通じ、まず仮説検証の重要性を再認識しました。数字を単に眺めるだけではなく、要素ごとに分解し、さまざまな仮説を立てながらデータを検証のツールとして活用する方法が有効だと感じました。また、比較を意識した分析を行うために、率や代表値を用いる手法が非常に効果的であるという考えにも改めて気づかされました。 実績把握で何が変わる? これらの学びは、月次実績の把握や事業計画の検討にも応用できます。過去の実績に基づいて仮説を立て、検証を重ねることで、次年度への具体的な打ち手が明確になっていくと実感しました。前年同月比や前年同期比を活用する手法も、現業務において引き続き継続し、より深い分析に結びつけたいと考えています。 復習と共有で成長は? また、ナノ単科の画面が見られなくなる前に、回帰分析や代表値の部分をしっかり復習し、自分の知識として定着させることが必要だと感じました。さらに、アウトプットの重要性を痛感したため、自ら立てた仮説や検証結果を周囲と共有し、意見を取り入れることで自身の成長を一層促進していきたいと思います。

戦略思考入門

最短距離で目指す戦略術とは

独自性はなぜ必要? ゴールに向かって最短距離で到達するためには、何をやるか、何をやらないかを選択し、他の人が真似しにくい独自性を持つことが重要であると再認識しました。また、戦略には計画的戦略と創発的な戦略があるという新たな視点も得ることができました。今後は、これらの理解を自分の言葉で他者に伝えられるようになりたいです。 戦略策定の鍵は何? 自部署の下期の戦略策定に関しては、まず上期の状況を分析し、継続することとやめることを選択することから始めたいと思います。各項目ごとにデータを比較し、どこに要因があるのか、なぜそうなったのかを考察します。その後、目的達成のための他の選択肢やルートも検討し、なぜそれを選んだのかをしっかりと説明できるようにしたいです。 本質はどう見極める? また、思考を深めるためには、考えを言語化し、なぜそう思ったのか、それを思う根拠を明確にすることが大切だと考えています。その上で、本当にその選択肢が必要かどうかを再度検討していく習慣をつけたいです。施策から入ってしまう自分の癖を意識し、今後改善していきたいと思います。

データ・アナリティクス入門

分析目的を明確に!データ活用の極意

分析の目的設定はなぜ重要? 「分析とは比較なり」が今回の講義の究極のゴールであるが、それだけでは不十分である。分析の目的をしっかり設定し、自分なりに仮説を立て、それに必要なデータを用意することが重要だ。また、適したグラフを選ぶことも必要である。 結果を伝えるための見せ方とは? 分析の目的を念頭に置きつつ、最終的にはデータ分析を基に説明や説得を行うため、見せ方にも気を配る必要があると感じた。 データ分析の活用方法は? 現在、保証契約のデータを分析している。目的は、経営陣に過去の実績を報告することと、顧客に実績を示すパンフレットを作成することである。それぞれの目的を追求すると、保証契約制度を推進する施策の検討や実績アピールによる利用促進が考えられる。これらの目的を念頭に、どのデータを分析すべきか、どう表現すべきかを考えることが大切だ。 記憶に残る工夫はどうする? 目的に立ち返ることを忘れないようにしたい。具体的には、PCの壁紙や手帳など、日常的に目にするものに「分析とは比較なり」と記入しておき、記憶のフックを作りたいと思う。

データ・アナリティクス入門

営業目標達成に向けた改善策と学び

施策の比較でつまずく理由とは? 施策を考える際、いくつか異なるものを試す傾向があったが、比較の軸がずれているケースが多々あり、その後のブラッシュアップにつながっていなかったと感じた。また、法人営業の立場ではWEB上でのA/Bテストの比較は難しいが、プロモーション検討などに役立てたい。 課員の訪問件数を改善するには? 【課員の顧客訪問件数が目標未達成の原因分析】 私たちの課では、一日2件、週10件の訪問目標が達成できず、案件数や案件総量も伸び悩んでいる。以下のような原因が考えられる。 - 課員の(やる気を含めた)スキルの問題 - 顧客層とのニーズの不一致 - 当社のブランド力 - 他の作業に追われている 下期のアクションプランを考えるには? 複数の原因が想定されるため、個人別に原因分析を行い、適切な対策を検討したい。 下期の個人別アクションプランにおいては、まず上期の振り返りとして、なぜ目標を達成できなかったのかを個別に検討してもらう。その後、目標達成のための改善策を共に考え、月次で改善度合いを評価し、PDCAを実践する。

データ・アナリティクス入門

データ分析で業務効率化の新発見!

データ分析で新視点を得るには? データ分析とは、比較を行うことで新たな視点やアイデアを引き出すことが可能であると学びました。同じ基準や条件を用いることで効果的に分析ができ、新しい発見に繋がることが特に印象的です。 効率化への第一歩は? これまでの仕事では、何となくデータを用いながらプロジェクトの進捗を管理していましたが、新しい職場では積極的にデータの可視化を取り入れ、業務の効率化を図りたいと考えています。以前は過去のデータより直近のプロジェクトの状況にのみ焦点を当てていました。 なぜデータ可視化が重要? 日常業務の中で、業務上必要がない場面でもデータを可視化することは重要だと考えていましたが、既存のシステムやBIツールに頼りがちでした。しかし、自ら業務プロセスをデータ化することが、業務のパフォーマンス向上に繋がるのではないかと考えています。 ダッシュボード作成スキルをどう磨く? 現在は過去のプロジェクトマネジメントの経験を活かし、会社の既存のダッシュボードを一から作成するスキルを身につけるために勉強を続けています。

データ・アナリティクス入門

仮説×分析で広がる学び

最初の目的は何? 分析に対して明確な目的意識を持ち、初めから仮説を立てるというプロセスは非常に実践的で役立ちました。最初に結論の方針を定め、その上でデータ収集を進める手法は、後の分析をスムーズに導いてくれると実感しています。 データ分解の意味は? また、データを分解し、得られた情報をさらに細かく吟味してストーリー性を持たせる工夫も印象的です。仮説の過程や構成要素を記録しておくことで、最終的な結論と照らし合わせながら再確認するプロセスも納得できるものがありました。 なぜ比較が必要? 加えて、複数の対象者から得られる情報において数を揃えて比較をするという点は、分析結果を信頼性の高いものにするための大切なポイントだと感じました。これにより、結論を支える根拠が一層明確になり、聞き手が納得しやすい資料作りが可能になっています。 学びの意義は何? 全体として、仮説に基づいたデータ収集と詳細な検証、そして論理的なストーリーの構成という一連の手法は、現実の業務においても非常に活用できる貴重な学びとなりました。

アカウンティング入門

PLからビジネスモデルを探る喜び

PLを読むコツは? PL(損益計算書)を読み解くことで、どのようなビジネスモデルが採用されているのかが見えてくるのが非常に興味深かったです。営業利益だけでは分からない細部も、さらに詳しく見ていくことで理解できると分かりました。なぜこのような数字になっているのか、その背景にあるコンセプトを考えながら読み解いていきたいと思います。 同業他社との違いは? 同業他社の数字にも興味があり、それがどのようなコンセプトでどこで利益を出す戦略を採っているのかを考えながら、自社と比較して確認していきます。自社のビジネスモデルとPLの数字が一致しているかどうかも、合わせて確認する予定です。 経理部門にどうアプローチ? まずは、自社のPLをしっかりと読み解けるようになることを目指します。不明点があれば経理部門などに問い合わせを行い、理解を深めていくつもりです。その後で、同業他社のPLも分析し、自社とのコンセプトの違いを確認します。他社の仕組みから学び、自社に活かせる部分があるかを検討していきます。

データ・アナリティクス入門

目的で変わる!正しい分析術

分析の目的は何? 分析というと、どうしても難しい印象を受けがちですが、肝心なのは「何のために分析を行うか」という目的を明確にすることです。比較対象があることで、解決へのステップ―What(何が問題か)、Where(どこに問題があるか)、Why(なぜ問題が起きたのか)、How(どう対応するか)―に沿って検証することができ、チーム内での適切な意思決定へとつながります。 現状はどう把握する? データを用いて現状を整理し、仮説を立てながら次の施策を練る作業は、目的があいまいな場合に迷走しやすくなります。目的と手段が混在すれば、正しい分析ができなくなるだけでなく、最終的なゴールが見えなくなってしまいます。そのため、チーム内で「何のために何を行うのか」を改めて明確化し、共有することが必要だと感じました。 担当は誰になる? また、チームの各メンバーが理解に齟齬を持たないようにし、誰が何を担当するのかをはっきりさせることが、全体の当事者意識を高め、効率的な取り組みに繋がると考えます。

データ・アナリティクス入門

業務効率化のカギはデータ分析と説得力!

日々の意思決定は? 業務で日常的に行っている意思決定も、「分析」の結果であるということに気づいた。また、より早く、より良い意思決定を行うためには、「データ」の性質を理解し、効果的な比較を行い、他者が納得しやすいようにグラフ等を使用する必要があることを学んだ。 なぜ運用を変えるのか? 業務効率化を進めるため、新しい運用を推進することが日常的にある。その際、従来のやり方を変えたくないメンバーも多いが、以下のプロセスを踏むことで業務効率化をスムーズに進められるようになると思う。 まず、なぜ運用を変更した方がいいのかをしっかり分析する。そして、反対メンバーが理解し納得しやすいように、グラフ等も活用しながら分析結果を提示する。 学んだ内容をどう活かす? まずはWEEK6までの学習の中で、「分析手法」「データの性質」「それぞれのグラフの特徴」をしっかり自分の身につける。そして、WEEK6までで学んだ内容をすぐに実践に取り入れ、上司やメンバーを巻き込み、業務効率化を達成していく。

データ・アナリティクス入門

数字で読み解く成長の軌跡

定量分析の鍵は? サンクコスト、定量分析、MECE、ロジックツリーという手法について学びました。定量分析では、データのどこに注目し、どこを比較するかが重要であることが分かりました。特に、①インパクト、②ギャップ、③トレンド、④バラつき、⑤パターンの各視点からデータの意味合いを読み取ることに注力しました。 MECEの意味は? また、MECEに関しては「もれなく、ダブリなく」に分けるだけでなく、意味のある切り分け方が重要であることを理解しました。この考え方を基に、現状と理想のギャップを明確にし、具体的な行動につながる方向性をメンバーに示すことが求められると感じました。 課題解決の道は? さらに、現状の課題として、分析結果の共有時にメンバー間で理解のずれが生じたり、行動に直結しない点が挙げられます。なぜこのような分析が必要なのか、そこから得るべきものは何か、そして課題の解決につながる具体的な実施方法について、今後さらに明確にしていく必要があると感じました。

データ・アナリティクス入門

データで読み解く解決ストーリー

なぜ原因を分解した? 総合的演習では、原因を一つひとつ分解し、必要な要素を紐解いていくプロセスを体験しました。分析作業では、何を比較するのか、またその比較からどのような意味合いや関係性が浮かび上がるのかを考察しながら、目的を明確にし仮説を立て、データによる検証のループを実感しました。 どのステップが有効? また、演習では課題解決のためのステップについて認識を深めることができました。具体的な状況を想定して仮説を設定し、分析内容をストーリーのように組み立てる過程は、プロセス全体を含めた納得感のある解決策となると感じました。こうした流れであれば、職場で共有しても十分に理解を得られると思います。 データで何が分かる? 現状分析においては、データの変化や数値の比較からどのような意味合いが導かれるのかを整理することが大切です。また、問題の原因や理由については、経験や感覚に頼るのではなく、データというエビデンスをもって示すことが求められます。

データ・アナリティクス入門

実務で活かす!徹底復習のススメ

なぜ復習が大切? 学んだ内容は、1週間前のものはすぐに思い出せる一方、1か月前のことはすぐに再現できないと実感しました。このことから、インプット、復習、そしてアウトプットの重要性を改めて学び、机上の学習にとどまらず、実務に活かす目的を持って本講座全体を自己復習しようと考えました。 どこから手を付ける? また、データビジネスやロジカルシンキングが未経験のメンバーには、いきなりドメインの詳細な説明をするよりも、入りやすい内容から始めるのが効果的であると感じました。具体的には、比較を用いた分析や、データ分析のプロセス、問題解決のステップなどが、そのヒントになり得ると考えています。4月以降の職務管掌は未定ながら、少なからず人材育成に関わる予定です。そのため、まずは本講座全体を自身で復習し、業務に必要な知見をピックアップしておくとともに、必要に応じてアウトプットすることで、自らの復習と組織全体の底上げを図りたいと思います。

「比較 × なぜ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right