データ・アナリティクス入門

データ分析で気づく改善の一歩

データ分析ってなぜ? 全体を通してデータを分析する重要性を改めて実感しました。今まであまり意識していなかったMECEの考え方―漏れや不足がない状態―について、比較の段階があることやそれぞれの段階で分かる情報の違い、そして明確な発見があるという点が印象に残りました。 着地見込みの工夫は? また、着地見込みを作成する際、単価を中央値で表示するなど細かい部分にも応用できる点を体験でき、シミュレーションに積極的に取り入れていきたいと感じました。今後は、シミュレーション結果や予算、実績とのGAP分析にもこれらの方法を活用し、より精度の高い検討を行いたいと思います。 GAP検証で何が起こる? さらに、シミュレーション実績との比較をもとにGAPの仮説検証を実施し、次の期には軌道修正が図れるよう動いていく予定です。まずは表やグラフを作成して比較し、そこから差異分析を行って仮説を立て、改善に結びつけていきたいと考えています。

データ・アナリティクス入門

仮説で切り拓く新たな発見の道

仮説は何のために? 仮説を立てることで、問題意識が芽生え、物事に対する検証マインドが育まれます。時間軸によって仮説の内容は変化しますが、頻繁に検討することで説得力が増し、スピードや行動の精度が向上します。そのため、仮説を立てた上で実際に行動していくことが重要です。 なぜ結果に違いが? 経理業務は過去のデータを整理する作業ですが、整理後の結果を見て、なぜこのような結果になったのかを考える際に仮説を活用できます。仮説を立てることで、結果が正しい理由があるのか、それとも処理に誤りがあったのかを、まずは検証することが可能です。 何が原因と判断? 具体的には、予算との比較や前年度との比較を行うことで、突出した変化を確認します。もし大きな変化が見られない場合は問題がなかったと判断できますが、何かしらの極端な変動があった場合には、その原因を仮説に基づいて検証することで、より正確な分析が行えるようになります。

データ・アナリティクス入門

平均の壁を越える、新指標の挑戦

課題はなぜ難しかった? 前週に比べ、今回の課題は難易度が上がっており、理解するまでにやや時間がかかりました。これまでは平均値を中心に分析していましたが、今回は単純平均、加重平均、幾何平均、中央値、標準偏差といった各指標を活用することで、より正確な分析に結びつけることができると感じました。 営業データの見直しはどうする? 業務では営業関連の数字を扱う機会が多いため、従来は一律の平均値を用いて前年度との比較を行っていました。しかし、さまざまな方法を試すことで、異なる角度からデータを分析できるのではないかという可能性を感じています。 新手法の試行錯誤は必要? これからは、どのデータにどの指標を適用するかを十分に検討した上で、目的に合わせたデータの取得と分析に取り組んでいきたいと思います。新しい手法に慣れるまで試行錯誤はあるかもしれませんが、自分にとっての最適な分析方法を見つけ出すことを目指します。

データ・アナリティクス入門

データ分析で見つける!問題解決への道

データ分析はどう始める? 分析は、比較から始まります。問題の定義やデータ分析の目的を明確にし、データの切り口や分析方法、データの効果的な見せ方、さらには仮説を立てる際に有効なビジネスフレームワークを学びました。 手続きの問題はどう捉える? 手続きのデジタル化率を向上させるためのプロモーション施策を考えることを目指し、どこに問題があるのか、どのように解決するのかを段階的に考えていきます。特に、どの手続きでデジタル化の進行が遅れているのかを把握し、その手続きを行った人のデータを深掘りします。 分析で何が分かる? 具体的なステップとしては、最初に手続きが紙ベースかデジタルかを確認し、次に属性データや過去にデジタル手続きを利用した履歴で分類します。それらのデータを用いて、なぜその手続きが利用されたのか、またはなぜ利用されなかったのかを分析することで、より深い理解や示唆を得ることができるでしょう。

アカウンティング入門

ビジネスモデル分析で見つけた新たな視点

ビジネスモデルの理解を深めるには? ビジネスモデルによって提供される価値が異なるため、どこに費用がかかり、どのように利益を生み出すかを理解することができました。他社のP/Lを見比べることで、その特徴や費用のかけ方がわかり、彼らの戦略を想像する手がかりになると感じました。 自社の毎月のP/Lをどう読み解く? まず、自社の状況や自分が関わる事業の状態を、毎月のP/Lをしっかりと読み込むことで理解していきたいと思います。そして、単に計画と実績を把握するだけでなく、なぜそのような結果になったのかを検証し、今後の対策に何が必要かを自分の課題として業務に活かしたいと考えています。 直近と過去のP/Lをどう比較する? さらに、直近のP/Lと過去のP/Lを比較して、どの数字がどのように変化しているのかを分析し、現在の自部門の問題点や必要な対策を明確にして、自分のアクションプランに取り入れていくつもりです。

データ・アナリティクス入門

ABテストで磨く実践力

ABテストはなぜ重要? ABテストを正しく実施するためには、まず目的や仮説を明確に定め、比較対象となる条件をしっかり整えることが重要だと改めて学びました。 問題解決はどう進む? また、問題解決のプロセスを順序立てて取り組むことで、何が問題であるのか、どのような仮説が考えられるのか、そしてどのような解決方法を選ぶべきかを体系的に理解できました。マーケティングチームでの売上進捗に関する課題の特定や、適切な打ち手の選択、さらに広告の効果検証など、様々な場面でこのアプローチを活用できると感じています。 多角検討はどうする? さらに、複数の切り口で課題に接近し、必要なデータの洗い出しや抽出方法、そして解決策の多角的な検討を進める過程で、チームメンバーと協力しながら取り組む重要性を再認識しました。今後は、業務の中で意識的にアウトプットの機会を増やし、実践的な成果に結びつけていきたいと考えています。

データ・アナリティクス入門

分析の裏側が開く未来への扉

なぜ生存者バイアスが起こるの? 思い返すと、分析に取り組む際に生存者バイアスの影響を受けていることがあったと感じています。既存の情報に頼るだけではなく、分析の目的や対象をしっかり整理することが、正確な分析と信頼できる情報提供につながると実感しました。 データの見方はどう? 現在の業務では、既存のデータをまとめて数字や報告資料にすることが主ですが、そのデータから得られる考察や予測も盛り込みたいと考えています。さらに、現状のデータだけに頼らず、より良い分析のために不足している情報や、精度を高めるためのデータ収集方法についても検討する必要があると思っています。 どう全体を俯瞰する? また、前月の稼働状況を報告する際、これまで前月と先々月の比較に終始していましたが、今後は全体を俯瞰する視点と詳細に注目する視点の両方を取り入れ、将来の予測や考察も盛り込んだ報告ができればと考えています。

データ・アナリティクス入門

データ分析とプレゼンの質を上げるコツを学ぶ

分析における比較の重要性を学ぶ 分析とは比較であることを学びました。データを扱う際にはサンプリングバイアスに注意し、何と何を比較するか、そして目的に沿った分析を行うための問いが重要であると理解しました。すぐに飛びつかず、まず一呼吸おいてからデータを取り扱うことが大切です。 土地選定にはどんなデータが必要? 土地の選定に際しては、エリアや距離といった比較可能なデータを蓄積し、入居率や地代との関係を探ることが必要だと感じました。また、社内説明資料を作成する際には、データの表現方法としてグラフや図をどう表現するかを学んでいきたいです。 事業組成には説得力向上が必須 事業組成の中では、なぜその事業を行うべきか、比較軸を立てた上で理解しやすいデータやグラフを使用し、プレゼン資料の説明力を高めることが必要です。これにより、事業化の打率を向上させることで部署や関係各所に貢献できるでしょう。

アカウンティング入門

数字の裏側を探る経営レッスン

各社比較で何が分かる? 総合演習では、各社のP/LやB/Sを比較することで、各項目の割合が異なる理由を業界に照らし合わせながらイメージできるようになりました。また、同じ業界内でもどの部分に注力しているか、つまりアピールポイントが異なる点を改めて認識しました。 計画と現状はどう? 自身の事業についても、P/Lが正しく振り分けられているか確認してみたいと考えています。これまで新規リリースのタイミングでしかP/Lを作成していませんでしたが、当時の計画値と比較して現状がどのようになっているのか、また実際に儲けは出ているのかを確認していくつもりです。 内訳を見直すべき? 現在、事業で使用しているP/Lは単にテンプレ通りに入力しているだけで、納得感が得られていません。今後は、各内訳ごとにその項目がなぜ含まれているのかを正確に把握し、説得力のある説明ができるよう努めたいと思います。

データ・アナリティクス入門

グラフが語る数字のドラマ

なぜ数値だけでは足りない? データの羅列だけで比較しても、各数値間のギャップを明確に示すことは難しいと感じました。そこで、統計的手法に沿い、平均値だけでなく最大値、最小値、中央値、最頻値など複数の数値を用いることで、データのばらつきをより具体的に把握できることに気付きました。また、こうした整えた数値データをグラフで視覚化することで、全体の傾向がより分かりやすくなると実感しました。 定性情報はどれほど重要? 実務上の変化を的確に捉えるためには、数値データと併せて定性情報のリサーチが不可欠です。これまでは、物量の精査や曜日ごとの波動を捉える際に平均値や中央値を多用していましたが、異常なオーダーも含めた数値をそのまま資料に取りまとめると、全体の概況が見えにくくなる可能性があります。今後は、日々の実績をもとに異常値を定義した上で、データの加工と分析に取り組んでいきたいと考えています。

データ・アナリティクス入門

問題解決と最適化に役立つ具体的手法を学ぶ

問題解決の順序がカギ? 問題解決のプロセスについて、「What、Where、Why、How」の順に進めることの重要性を再確認しました。問題理解と適切な対策を講じるためには、なぜなぜ分析を行い、真の原因を見つけ出すことが不可欠です。このプロセスは、提案時の逸注分析やプロジェクトのトラブル、営業活動におけるクレーム対応などの場面で活用できます。 A/BテストでCROを最適化するには? また、A/BテストがWebマーケティングにおけるCRO(コンバージョン率最適化)の手法の一つとして有効であることを学びました。この手法は事業プランの策定時にも有効です。具体的には、異なる案を用意して比較し、優れた点を組み合わせてブラッシュアップしていく方法です。マーケットプランにおいても、自社案と協業先の案を出し合い、検証や補完を行うことで、より確実なプランを作成することができます。

データ・アナリティクス入門

目的から逸れずに効率UP!分析のコツ

目的設定はなぜ重要? 目的と比較の設定は非常に重要です。特に他者に仕事を依頼する際は、これが鍵となります。分析においても、目的に沿った意味のある係数と、そうでないものを見極める必要があります。目的によってその意味は変わり、使い方次第では係数の有無も変わってきます。 自己分析で気をつける点は? 自己分析の際も、目的からぶれないことが重要であり、目的に応じた答えや提案が含まれるインサイトを得られるかを考慮する必要があります。チームに依頼する際も同様に、彼らの仕事が意味を持つよう、効率化できるポイントを設定します。 比較時に確認すべきことは? 何が目的なのかを明確に書き出し、何をどの観点から比較したいかを考慮します。また、目的から逸れそうになったら立ち返って確認することが大切です。比較がきちんと同じ条件下で行われているかも再度確認しなければなりません。

「比較 × なぜ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right