アカウンティング入門

営業戦略の裏側を徹底解析!P/Lで見る必勝法

なぜP/Lを理解する必要があるのか? ビジネスのコンセプトやビジネスモデルを理解した上でP/Lを読むことが重要です。ビジネスモデルが分からないままP/Lだけを見ても、数字の示す意味が理解できなくなります。ビジネスモデルが分かると、数字、特に費用の内訳が想定しやすくなります。特にマーケティング費用は時折忘れがちになるので注意が必要です。これは、エンジニア出身者の弱点としてより意識して取り組むべき点です。 ビジネスモデルごとのP/L比較 現在、部門内のいくつかのプロジェクトのビジネスケースを見直す時期です。各プロジェクトのP/Lを確認し、特にサービス、ハードウェア+サービス、ハードウェアBtBなどのビジネスモデルごとにP/Lを比較しています。これにより、各プロジェクトの個別のP/Lが確認できる状態になり、横並びで比較することで違いが見え始めています。 効果的なP/L確認の方法とは? まずは、各プロジェクトから提出されるP/Lを来週1日1件ずつ確認していきます。確認すべきプロジェクト数は5つあり、1日1件確認する予定です。分からない項目については、各プロジェクトチームに確認して理解を深めることが重要です。一件ずつ質問を通じて理解を深めていくつもりです。 来週の目標とアクション宣言 グループワーク後の宣言として、米国時間の木曜日までにGlobisの課題を終わらせる予定です。また、プロジェクトのP/Lを見ての気付きも発表する予定です。

データ・アナリティクス入門

正しい問いが導く解決の鍵

何が問題と捉える? 問題解決のプロセスには、まず「何が問題か(WHAT)」を明確にすることが基本であり、その後に課題の位置(WHERE)や発生原因(WHY)、そして具体的な対策(HOW)を検討する流れがあると学びました。 本質はどう捉える? 普段、私は問題が起こるとすぐに「どのように対応するか(HOW)」を考えてしまいがちです。しかし、本質的な解決策を導くためには、まず問題自体を正確に捉えることが重要だと実感しました。その際、基本となる「比較」を行うことで、どの部分に大きなギャップがあるかを見極めやすくなります。 経営結果の謎は? また、年次の経営結果を分析する際も、まず何が問題なのかを探ることが肝心です。例えば、利益が上がらない原因が売上の減少にあるのか、費用の増加によるものなのかを明確にし、どのカテゴリー、どの購買層、またはどの部門に起因しているのかを整理することが求められます。そして、その整理された課題に対してどのような対策を講じるかを段階的に考えていくことが大切です。 問いの作り方は? 最も難しいと感じたのは、問題そのものを見つけ出すための適切な問いを立てることです。正確な問いがあれば、フレームワークに沿って段階的に解決策を導き出すイメージが湧きます。しかし、感度の高い問いが立てられなければ、効果的なロジックツリーを作成することも困難になります。今後は、この問いを立てるコツをより一層習得していきたいと感じました。

データ・アナリティクス入門

数字に隠れた学びのヒント

全体の流れは? データの分析にあたっては、「what」「where」「why」「how」を意識し、細部に目を向けながら全体の流れを把握することが大切だと感じました。平均値を確認する際にはばらつきも捉え、代表値を選ぶときには元データの傾向を十分に理解することが、全体像(森)を見渡す鍵になると実感しました。 仮説検証の進め方は? また、データから得られた示唆をもとに、さらに分解して仮説検証を進めるプロセスが重要であると感じています。単に数字を追うのではなく、その裏にある人々の行動や意図をイメージすることで、より深い理解へとつながると気づかされました。 アンケート設計はどう? 加えて、アンケート設計において「どちらでもない」を選ばせない工夫が、回答者の意見をより明確に捉えるために有効であるという点も良い気づきでした。こうした取り組みは、得られる情報の質を高め、後の分析においても大いに役立つと思います。 EC分析の鍵は? さらに、ECにおける顧客、商品、売上といった各視点のデータ分析に、この学びを応用していきたいと感じています。実習課題では前年との比較を行い、特定の商品カテゴリでの売上低下など、数多くの視点から分析する方法を学びました。昨年と今年の売上推移、売れ筋商品のトレンド、併せ買いの傾向、そして商品における顧客属性の違いなどを比較することで、売上が低下した場合のリカバリー対策の策定にも役立つ視点を得ることができました。

データ・アナリティクス入門

多角的な視点で学び直すビジネス分析技術

講座で再確認した3つのポイント 今回の講座を通じて、以下の3点について再確認することができました。 まず、多角的に分析・比較することの大切さです。次に、自分の目線ではなく、聞き手の目線や聞き手の属する組織の目線に合わせることの重要性です。そして、聞き手が普段から利用している分析の観点を押さえておくことで、話が通じやすくなることも理解しました。 保有案件と市場調査の具体的学び 具体的な学びとしては、以下の内容が挙げられます。 まず、保有案件の分析です。案件のコンディション別に受注確率を算出し、保有案件量を確度別に分類して先週との差異を出しました。また、市場調査においては、マーケット分析を自動化する手法を学びました。 売上分析と満足度調査の手法 次に、売上分析に関しては、特定マーケットに対する自社の製品・サービス別の売上を整理する方法と、その自動化について学びました。お客様満足度調査では、データを用いて定量的に経年比較を行う生産性の高い分析方法を習得しました。 実務での応用と課題解決の姿勢 さらに、新しく作成した分析結果の表やグラフをわかりやすくする方法についても学びました。 これらの考え方や手法を実務で試みました。特に、頻度の高い業務である保有案件量の分析で実践し、課題を発見。その課題を講座で確認し、解決を図る姿勢を持ちました。講座内で解決が難しい場合には、職場の周囲から教わり、解決する方針としました。

クリティカルシンキング入門

データ分析で企業課題を解決!

データ利用の意味は? データを用いる際には、何を表しているのかが明確であり、求める情報を把握できることが重要であると再認識しました。データを全体的に理解し、必要な情報が簡単に見つけられるように工夫を凝らすことも大切です。 目的設定はどうする? データを分析や検証に活用するには、明確な目的を持つことが欠かせません。また、データを分解する際にはMECE(Mutually Exclusive, Collectively Exhaustive)を意識し、様々な観点から分解を試みることが重要であると学びました。 決算分析の秘訣は? 私の会社での月次・年次決算や予実乖離分析にもこの手法を活用できると考えています。これまでの分析では、売上や利益などの主要な数字の推移に依存しており、MECEを用いた分解を行わなかったため、説明できない誤差が残ることがありました。しかし、このスキルを活用することで、予実乖離分析をより正確に行えると感じています。全体の財務諸表を、顧客別や顧客売上別、利益別、部品別といった様々な視点で分解し、正確な分析に結びつけたいと考えています。 コスト要求はどう対処? また、不定期に発生する顧客からのコストダウン要求に対して、社内のコスト把握と顧客要望との比較分析を行うことも目指しています。そして、24年度の予実乖離分析を行ったうえで、25年度の予算作成に反映させ、より正確な計画を作成したいと考えています。

データ・アナリティクス入門

初心者でも使える問題解決フレームワーク

実践で感じた課題とは? あるべき姿と現状を比較することを心がけてきたが、いざ実施しようとするとできていないと感じることがあります。そのため、まずはWhat(問題を定める)を意識することが重要だと感じています。課題を考える際は、マーケティングの課題なのか、人材の課題なのかといったように、区分分けをすることが有効です。 ロジックツリーは効果的? 数字はロジックツリーのように因数分解することで、どの要素がどのように貢献しているのか(正負を含めて)を把握できることを初めて知り、これはぜひ身に着けたい知識です。 現状把握と意識共有の方法 まずは状態を確認し、たとえ当たり前のことでも言語化することで現状を把握し、チームでの共通認識を持つことが大切です。その後、原因となる事象を特定し、解決策の検討に進みます。ユーザアンケートをデザインする際には、仮説をもって因数分解ができるように、クロス集計も意識します。 新人教育でのロジックツリーの活用 新人教育ではロジックツリーやMECEを活用して、アンケートデザインにおける考え方の方針をチームで共有し、どんな分析ができるのか、また何をしたいのかを実際に仮レポートを作成してみることも大切です。 フレームワークの選択と目標 あるべき姿と現状を整理するために、優れたフレームワークを見つけ、それを習得することが目標です。また、教えられるように資料に整理することも心がけていきます。

データ・アナリティクス入門

数字の隠れたストーリーを探る

全体像はどう把握? データを加工する際には、まずインパクト、ギャップ、トレンド、ばらつき、パターンといった視点から全体像を把握することが重要です。その上で、数字で示すのか、ビジュアル化するのか、数式を用いるのかといった手法を選択します。予め何を知りたいのかという前提を忘れず、単に平均値を取るだけでなく、ばらつきに注目して外れ値に潜むチャンスを見出す視点が必要だと感じました。 競合比較はどう見る? 自社品の売り上げや競合との比較についても、提示された数字をそのまま受け止めるだけではなく、どこにベンチマークを置くのかを意識することが求められます。売上が前年より伸びている場合でも、市場全体が拡大し、競合もその中で成長しているのであれば、そのギャップはどこにあるのかを考える癖を身に付けることが大切です。月ごとのシェアや日々の実績トレンドを、抽象的な視点と具体的なアプローチの両面から分析し、真相に迫ることが目標です。 トレンド集計の課題は? また、毎日売上トレンドを集計し、メンバーと共有しているものの、単なるトレンド情報だけではベンチマークを示すことができません。さらに、競合品のデータもタイムリーに入手できていないため比較が難しい状況でした。ピボットテーブルで集計する前のデータ収集に手間を感じ、与えられたデータベースだけで処理しようとしていた自分の意識を改め、より柔軟な視点でデータ活用に取り組む必要性を強く実感しました。

データ・アナリティクス入門

分解して発見!論理の先へ

講義で何を学んだ? 今週はライブクラスに参加できなかったため、動画で講義を視聴しました。講義では、データ分析を進めるにあたって、解決すべき問題を明確にすることの重要性が説かれていました。また、売上低下の原因を複数の視点から分解し、掘り下げた情報の中から解決につながる要素を見出す手法について学びました。 比較で見る視点は? 具体的には、客層やばらつき、年齢層、客単価といった各要素を前年のデータと比較することで、売上低下の原因を浮かび上がらせる方法が紹介されました。比較の過程では、どのグラフを用いて示すのが適切かは一つに限らず、さまざまな手法が存在する点も興味深かったです。 偏りを防ぐには? また、自分の考えに偏りがかからないよう、誰にでも納得してもらえる解決策を導くためには、内容をしっかり分解しデータ分析することが不可欠であると再認識しました。これまでの経験や業種に頼らない、異なるアプローチや視点で物事を見る意識を持つことの大切さを改めて感じました。 論理的思考は? データ分析の学習を通じて、より論理的な思考と仮説検証の実践が重要であることを学びました。情報整理やパターンの発見、適切な結論の導出には、さまざまなフレームワークや手法の活用が役立つと感じ、これを習慣化することが今後の課題と考えています。また、不得意なエクセルでのグラフ作成についても、試行錯誤を重ねながらスキル向上に努めていきたいと思います。

データ・アナリティクス入門

現場で磨く仮説思考の実践

具体的演習の魅力は? 総合演習の課題解決は非常に具体的で、これまでの演習と比べると、より深い検討が求められる良い機会となりました。 フレームワーク使用法は? 仮説を考えるプロセスでは、思考の幅を広げるためにフレームワークの活用や対概念の取り入れ方が提示されました。しかし、現時点ではフレームワークの使いこなしが十分ではないと感じ、今後の日々の活動の中で意識的に取り入れていきたいと思います。 A/Bテストの効果は? また、A/Bテストを活用して早期にアクションを起こすことで、得られたデータをもとに仮説をさらに精緻化する取り組みも印象的でした。Web関連の利用場面では活用しやすい一方、現業務にすぐ生かすことは難しいと感じたため、二つの選択肢の中から比較しながら適した選択を見つけるアプローチを取り入れたいです。 問題解決の流れは? 問題解決については、問題に至るまでの流れをプロセスに分解し、どの段階に原因があるのかを明らかにする手法が有効だと実感しました。解決策を検討する際にも、複数の選択肢を洗い出し、根拠をもって絞り込むことの重要性が伝わってきました。 現場実行のコツは? 現在の業務では、大規模なデータ分析による示唆を提示するよりも、現場に近いところですぐに施策を実行することが求められていますが、仮説思考に基づいて複数の仮説を立てた上で行動に移すプロセスを意識的に実践していきたいと考えています。

データ・アナリティクス入門

目的で変わるデータ分析の極意

目的は何だった? 今週の学習を通じて、データ分析は単に数字を集める作業ではなく、まず「何を目的に、どの項目と何を比較するのか」を考えることが重要だと強く実感しました。これまでの私は、手元にあるデータをただ集計し、そこから何か分かるのではないかと考えることが多かったのですが、その結果、正しい判断に至らない場合があると気づかされました。 本質は見えてる? 特に印象に残ったのは、分かりやすいデータだけに頼る生存者バイアスの考え方です。自分自身も、分析しやすいデータに引っ張られがちであったため、「本来見るべきものは何か」という視点を持つ必要があると痛感しました。 課題は何だろう? これまでは、商業部門や関係部署からの依頼で内容を十分に整理せずに作業を進めることがあり、その結果、意図とのズレや手戻りが生じることもありました。今回学んだ「目的と比較を意識したデータ分析」は、現在担当している業務にそのまま活かせると感じ、作業開始前の進め方を見直す良い機会となりました。 対策はどうする? 今後は、依頼を受けた段階で「何を明らかにしたいのか」「どの期間や条件と比較するのか」を必ず確認し、目的とゴールを整理してから作業に取り組むようにしていきます。一方で、実務では依頼元自身が目的を明確に言語化・整理できていないケースも多いと感じ、この場合、どこまでこちら側が踏み込むべきかという課題も感じました。

データ・アナリティクス入門

仮説から未来を切り拓く学び

比較を正確にするのは? 分析は、単に項目を比べるだけではなく、具体的な要素を明確にすることで、より良い意思決定へと繋げる重要なプロセスです。比較対象となる項目以外の条件を可能な限り同一に揃えることで、正確な比較が可能となるため、「Apple to Apple」の状況が求められます。データ分析に用いる情報には、定性データと定量データの両方があり、それぞれの特性を活かしながら分析を進めることが必要です。 仮説の立て方は? データ分析のプロセスでは、まず目的を明確にし、その目的に沿って「仮説」を立てることが大切です。仮説を基に、どの項目をどのように抽出し、どんな結果が想定されるかを考えることで、分析の方向性が見えてきます。また、グラフの作成時には、何を強調したいかという視点から見せ方を工夫することで、情報が整理され、分かりやすいプレゼンテーションが実現できます。 顧客データの意義は? 私は食品メーカーの営業職として、自社の売上や利益のデータはもちろんのこと、主要なお得意先である小売業やドラッグストアなどの顧客データも分析しています。膨大な情報の中から、目的に沿った仮説を立て、抽出すべき項目を明確にすることで、単なるデータの羅列ではなく、得意先の課題やチャンスを具体的に示す資料を作り上げることを意識しています。このプロセスを通じて、課題解決への道筋を明確に示し、より良い提案につなげることが求められています。

データ・アナリティクス入門

問題解決力の高め方がわかる最高のストーリー

問題解決手順をどう進める? 問題解決のプロセスは、「What→Where→Why→How」の順で進めることが重要です。特に「How」の段階では、課題に対して複数の仮説を立て、それに基づいて具体的な対策(打ち手)を検討します。この際、効果、コスト、スピードなどの枠組みを用いると視覚化しやすくなります。 効果を測定するための方法は? 効果を測る方法としては、ABテストが有効です。ランダムにユーザーを対象としてテストを行うことで、より効果的な対策を実証できます。 打ち手を評価する際の注意点は? また、打ち手を検討する際には、決定要素を洗い出し、各項目に対してメリットとデメリットを評価します。仮説をもとに打ち手を考える際も、常に比較する意識を持つことが大切です。必要であれば、再度ABテストを行い、効果が高い対策を実施します。 プロジェクトで重視すべきポイントは? プロジェクトにおける課題解決業務においては、次のポイントを重視します。まず問題解決のプロセスを意識して、問題の所在とその本質的な要因を明確にします。その上で具体的な打ち手を考え、その効果を検証します。この状況でABテストが必要であれば、実施します。 新企画の決定基準はどう定める? さらに、新しい企画や打ち手を考える時は、決定の基準となる枠組みを明確にし、比較を行います。これにより、異なる打ち手の粒度を均一にし、論点を具体化します。
AIコーチング導線バナー

「比較 × 課題」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right