データ・アナリティクス入門

数字が照らす学びの道

どうやって特徴を捉える? 大量データを比較する方法として、まずデータの特徴をひとつの数字に集約し、グラフ化して視覚的に把握する手法を学びました。これにより、数値としての評価だけでなく、データの散らばりや傾向も同時に捉えることが可能になります。 平均値の違いを知る? 平均値や中央値を確認するために、単純平均、加重平均、幾何平均、そして中央値の各手法を比較しました。今まで単純平均や加重平均を主に用いていたため、このうち幾何平均と中央値の手順が分かっていなかったために、業務上物足りなさを感じていた点に気づくことができました。 分布の形はどう判断? また、データの平均的な分布をグラフ化することで、これまで感覚的に捉えていたデータの散らばりを、標準偏差などの具体的な数字として表現する必要性を認識しました。こうした数値化は、データのばらつきが大きいのか小さいのかを明確に捉える上で非常に有効です。 利用状況をどう見る? さらに、提供しているサービスの利用状況を単なる数の集計として週次報告している現状に対して、まだ活用できていないデータの中に、利用者の属性や利用時間帯などの詳細な情報が含まれているのではないかと考えるようになりました。これらを分析することで、サービスの改善点や利用者の利便性向上につながる提案が可能になると感じています。同様に、ライセンスやクラウドの予算についても、感覚的な予測に頼らずデータに基づいた数値をフィードバックすることで、より説得力のある結果に結びつくと考えています。 予測結果は合致? また、1年前に作成した将来のクラウド利用予測と現状を比較するタイミングを迎えたことから、その分析を活用し、利用していなかったデータも含めてさらに掘り下げていこうと考えています。あわせて、学習用の動画を見直すことで、自分自身の理解をより一層深める予定です。

データ・アナリティクス入門

問題の原因をデータ分析で解明!

問題の原因をどう探る? 問題の原因を探るためには、データを確認しながら原因を突き止めることが重要です。問題の原因を明らかにするために、プロセスを分散して問題箇所を絞り込み、原因の仮説を立てるのが効果的です。問題がある場合、その結果には必ずその流れがあり、その流れを押さえることで、プロセスのどの段階に問題があるのかを特定できます。 解決策の検討はどう進める? 解決策を検討する際は、複数の選択肢を洗い出し、根拠を持って絞り込むことが求められます。ステップを踏んでデータを分析し、問題解決の精度を高めることと、仮説を試しながらデータを収集し、より良い問題解決に繋げることは、両者のアプローチを組み合わせることが効果的です。まず手始めに身の回りのデータを分析すること、分析の練習を積み重ねること、そしてどんな分析計画を立てるかシミュレーションし、どんな情報を誰から収集するのか、データはどんな形で収集すればよいかを考えることが大切です。 シンプルで低コストなA/Bテストの利点 A/Bテストは、AとBの施策を比較するシンプルなテストです。運用や判断がしやすく、低コストで少ない工数で実施できるため、リスクが少ない。A/Bテストを行う際には、目的や仮説をしっかりと明確にし、有効なデータが集まるまで実施します。ただし、複数の要素をテストしたい場合には別の手法を検討すべきです。また、パターンは同時に同じ期間行うことが必要です。 データ分析の第一歩は何から始める? 解決策を考えるときには、必ず複数の選択肢を検討し、「ステップを踏んでのデータ分析」と「仮説を試しながらのデータ収集」の両輪で分析を行うことが効果的です。分析が苦手な方には、まず身の回りのデータを分析すること、分析の練習を積み重ねること、そして問題にはそこに至るまでの流れがあることを意識することをお勧めします。

データ・アナリティクス入門

一歩ずつ探す解決のカギ

課題発見はどうする? 分析の際は、プロセスごとに分けて検討することで、どの段階に課題が潜んでいるのかを見つけやすくなると感じました。原因の仮説を立てる際には、関連性が高いと思われる要素だけではなく、そうでない可能性も含めて「対概念」を活用し、視野を広げることが有効です。 解決策の比較は? また、複数の解決策を検討する時は、条件をなるべく同じにした状態で両方の施策を試す「A/Bテスト」が効果的だと思います。各プロセスごとのデータを丹念に分析しながら、仮説を練り、実践的に検証していくことで、問題解決の精度を高めることができると実感しました。 問題の本質は何? 問題解決においては、まず「What:問題は何か、どの程度の問題か」、次に「Where:問題はどこにあるか」、その次に「Why:問題はなぜ発生しているのか」、そして「How:対策はどうすべきか」と、手間を惜しまずにしっかりと向き合うことが大切だと考えています。 思い込みは避ける? 例えば、あるサービスの売上が低下した場合、その原因をプロセス別に網羅的に仮説することで、思い込みや決めつけを防ぐことができます。短絡的に一つの原因で結論づけず、見落としがちな小さな要因にも目を向けることが、より正確な原因特定につながるでしょう。 他の要因は何? さらに、売上低下の原因が購入者数の減少だと仮定した場合、すぐに「売価の上昇」が原因と結論づけるのではなく、もし売価の変動が原因でないとすれば、他にサービス内容の悪化など潜在的な要因があるのではないかと、幅広い視点で検討することが重要だと感じました。 成果検証はどう? 最後に、複数の施策を同時に実稼働させる「A/Bテスト」についてですが、一人の判断だけに頼らず、実際の成果がどの程度得られるのか、具体的な事例を交えて効果を検証してみたいと思います。

クリティカルシンキング入門

伝わる設計力で心を動かす

スライド表現の工夫は? 今回の学びを通じて、スライドは単に情報を整理するだけでなく、伝えたいメッセージをどう設計し、視覚的に届けるかを考えるための道具であると実感しました。言葉の選び方や装飾の工夫、情報の順番、グラフの形式など、細部が伝わりやすさに大きな影響を与えることに気づきました。 構造思考の必要性は? 一方、実務では、コンテキストや課題構造を捉えた構造化思考モデルを用いて議論することが多いため、思考の流れや全体像を相手と共有することが求められます。今回の学びは、そのような場においても「何をどう見せると伝わるのか」という視点を意識するヒントとなりました。 伝わる力強化の秘訣は? 今後は、スライドと構造化思考モデルの双方に共通する「伝わる設計力」をさらに高め、意思決定を支えるための視覚的な意味の構造を効果的に伝えるビューモデルの設計に取り組んでいきたいと考えています。具体的には、課題の背景や構造、検討すべき施策、期待されるインパクトを整理し、キーメッセージを短く明確に表現することを第一歩として、経営層との対話に活かせる資料作りやワークショップの設計を進める予定です。 提案資料やワークショップの設計においては、「このコンテンツで意思決定者にどんな行動を促すのか」「どのような構造で納得を得るのか」を明確にした上で、ビューの順序設計や視線の流れ、強調すべきポイント(色、太字、枠、矢印など)を意図的に取り入れていきます。特に、判断の分かれ目となる構造や施策の選択肢を、比較しやすい形でビジュアル化し、なぜそれが妥当なのかを自然に伝えられるよう心掛けます。 来週予定している経営者向けのワークショップでは、重点戦略の構造化や目標設定の意図をいかに伝えるかをポイントに、今回の学びを反映したビューモデルの設計と実践に挑戦するつもりです。

データ・アナリティクス入門

データ分析で実現する未来の可能性

比較の重要性とは? データ分析において、比較は極めて重要な要素です。要素を整理し、性質や構造を明確にすることで、なぜ「良い」あるいは「悪い」と判断されるのかを理解することができます。判断するためには、特定の基準や他の対象との比較が必要であり、比較を通じて初めてデータに意味が生まれます。 目標設定の重要性 分析には目的や仮説の明確な設定が不可欠です。分析の目的が曖昧であったり、途中でぶれてしまうと、都合の良いデータばかりを使う危険性が生じます。また、不要な分析に時間をかけてしまうリスクもあります。したがって、「何を得たいのか」という分析の目的と、それに必要なデータの範囲をしっかりと見極めることが必要です。 データの特性と可視化 データは質的データと量的データに分類され、さらにそれぞれ名義尺度・順序尺度または比例尺度・間隔尺度に分解できます。それぞれのデータの特徴を理解し、注意しながら扱うことが重要です。異なるデータを組み合わせることで、ひとつのデータだけでは見えてこなかった新しい情報を得ることが可能です。これらを効果的に可視化するために、グラフを利用しますが、グラフには適した見せ方があります。例えば、割合を示すには円グラフが、絶対値の大小を比較するには棒グラフが適しています。 新プロダクトの市場分析 現在、私は新しいプロダクトのリリースによって市場規模がどれだけ拡大するかについての分析を進めています。分析結果を基にした組織全体でのコンセンサス形成が不可欠であり、そのためには分析結果をわかりやすく可視化することが重要です。講義で学んだ内容をもとに、収集したデータをEXCELで整理し、グラフで可視化する予定です。どのデータをどのグラフで可視化するかは、講義の知識を活用しつつ、基準の設定も意識しながら判断しています。

マーケティング入門

未来を拓く学びを体験して

商品のイメージ作りとは? 商品が売れるかどうかは、顧客がその商品に対してどのようなイメージを持つかによって大きく左右されます。そのため、商品の使用方法や効果を顧客に明確にイメージさせること、そして顧客の心理を理解することが重要です。 イノベーション普及の要件は? イノベーションの普及にはいくつかの要件があります。第一に、従来のアイデアや技術と比較しての優位性(比較優位)です。次に、生活の大きな変化を強要しないこと(適合性)、使い手にとってわかりやすく易しいこと(わかりやすさ)、実験的な使用が可能であること(試用可能性)、そして新しいアイデアや技術が採用されていることが周囲の人々から観察されやすいこと(可視性)です。 競合ばかりを意識しすぎていない? 年齢や性別のみでマーケットを判断するのは危険です。心理的な要素や行動面での変数、成長の可能性、競合商品についても考慮する必要があります。流行している商品と同じような商品を競合が出してくることで、顧客ではなく競合ばかりを意識してしまうことがあります。この「差別化の罠」に陥らないためにも、常に顧客目線を持つことが重要です。 プロモーションの目的を再考すべき? プロモーションを行う際には、商品が正しくイメージされるよう配慮し、イノベーションの普及要件と照らし合わせて確認することが求められます。また、プロモーションの目的が競合との差別化だけにならないように注意し、顧客ニーズに沿った商品・施策であるか、顧客からどのように見えるかを意識することが重要です。プロモーションが顧客にどのようなイメージを与えるか考察し、うまくいっていない商品の理由や改善策を考える際には、年齢や性別だけでなく、心理的および行動的な変数も考慮して市場を捉え、プロモーションに活かすことが重要です。

戦略思考入門

戦略思考が切り拓く未来

全体像は見えてる? 戦略的思考は、足元の予測が難しい現代において特に重要です。事実にとらわれず、物事の本質を見極めることで、目標を効果的に達成する方法を体系的に考えることがカギとなります。そのためには、大局的な視点を持ち、バランスよく情報を収集・分析することが求められます。 思考法をどう見直す? 戦略的に考えるためには、まず思考方法を見直す必要があります。経営者の視座で大局的に物事を見ることは、経営者が何を重視するかを理解するうえで大変有益です。また、ジレンマを過度に恐れず、100%の整合性を求めずに、しっかりした判断基準を設定することも大切です。さらに、他社の意見に耳を傾ける姿勢を持つことも欠かせません。 フレーム分析で分かる? 具体的な戦略立案には、各種フレームワークの活用が有効です。例えば、3C分析では、市場(マクロ視点)と顧客(ミクロ視点)、競合、自社の視点から物事を整理し、状況を把握します。SWOT分析では、自社と競合を比較しながら、自社の強みと弱み、さらには外部環境における機会と脅威を整理します。こうした過程を経て、クロススワットによる4軸の分析が行われ、具体的な施策が導かれます。バリューチェーン分析では、事業の各機能を連鎖上に分解し、どの部分から付加価値が生まれているかを把握して戦略構築に活かします。 過去の失敗を反省? これまでフレームワークについては断片的な理解に留まっており、実際の活用方法が十分に把握できていなかったと反省しています。たとえば、3C分析では、分析の順番や市場分析におけるマクロ視点とミクロ視点の重要性を十分に考慮せず、なんとなく枠にあてはめていた側面がありました。今後は、実際の事例を通してフレームワークの使い方を再学習し、自社の状況に的確に応用していきたいと考えています。

アカウンティング入門

P/Lから学ぶ経営のコツ

売上と利益は何を見る? 売上から原価を引いたものが利益となり、P/Lでは売上や利益に注目するとともに、他のデータと比較することでトレンドや売上高と利益のギャップなどが見えてきます。 ビジネスの核心は何? ビジネスを考える際、根幹をなすのはビジネスモデルであり、Core Valueと言えます。ビジネスモデルにはそれぞれストーリーがあり、P/Lを読む際にもその基本となる考えを頭に入れておくことが重要です。さらに、何か施策を実行する際には、Core Valueに一貫した行動を取らなければ、ビジネスモデルが崩れる危険性があります。 KPIはどう活かす? また、P/Lを意識してビジネスモデルやCore Valueを理解することは、日常業務の評価にも役立ちます。たとえば、KPIはビジネスモデルやCore Valueを反映しているか、実際に価値を生み出しているかを判断する一助となります。KPI改善のためのアクションを検討する際も、これらを踏まえた一貫性のある取り組みが求められます。 事業比較の意味は? あるケースで、2つの事業のP/Lを比較してみたところ、ある事業は利益が多いものの、売上に対する利益の割合は低く(約2.59%)、一方では利益率が高い(約2.86%)結果となりました。長期的な視点で考えると、高品質な調度品や内装を維持するためには定期的な更新が必要で、その際には特別な費用が発生する点に留意しなければなりません。前者では更新費用が比較的少なく済むと想定されるため、この条件下では後者のビジネスモデルの方が長く続く可能性があると感じました。 戦略評価はどうする? このように、P/Lを通してビジネスモデルやCore Valueを理解することは、戦略の策定や日常業務の評価において非常に重要だと実感しました。

データ・アナリティクス入門

分解と検証で明かす解決のヒント

どこに問題潜む? 問題の原因を探るためには、まずプロセスを段階ごとに分解するアプローチが有効です。これにより、どの段階に問題が潜んでいるのかを明確にできます。同時に、解決策を検討する際は、複数の選択肢を洗い出し、根拠をもって絞り込むことが重要です。決め打ちせず、判断基準の重要度に基づく重み付けを行いながら評価する方法がおすすめです。 条件は整ってる? A/Bテストにおいては、それぞれの施策を比較・評価する際、できる限り条件を揃えることが求められます。 どうやって精度向上? また、ステップを踏んでデータ分析を行うことで、問題解決の精度を高めることができます。ある程度有望な仮説が立てられたら、まずは実行し、実際の市場や顧客の反応をもとにデータを収集して検証を重ねる方法が効果的です。 どこで・なぜ・どうやる? 自分の身の周りでデータ分析のトレーニングをする際は、まず「どこで(Where)」問題が発生しているのか把握し、次に「なぜ(Why)」その仮説が成り立つのかを立て、最後に「どのように(How)」打ち手の有効性を検証するプロセスが役立ちます。 どちらが響く? プロモーション活動のマネジメント業務において、インターネットを介した施策が難しい場合でも、どのパッケージが顧客に響くのかを検証する観点で実施することが可能です。例えば、協調すべき訴求ポイントをAパターンとBパターンで打ち出し、どちらがより顧客の反応を捉えられるかを分析・検証します。まずは、AパターンとBパターンそれぞれのアクションプランを策定しチームで共有し、条件をできる限り揃えられるよう協議します。その上で、予測されるボトルネックを洗い出し検証を進め、アクションが決まれば早速実行し、仮説検証を繰り返すことで問題解決へと結び付けていきます。

データ・アナリティクス入門

問題解決のプロセスで成果を出す方法

「Why」と「How」の探求は? 問題解決の4つのプロセスのうち、最後の2つである「Why(なぜ)」と「How(どのように)」について考えました。問題の原因を明らかにするために、プロセスを分解し、どの段階に問題があるのかを特定します。そして、解決策を検討する際には、複数の選択肢を洗い出し、それぞれの根拠を持って選定します。 学びをどう生かすか? これまでの学習でも、都合の良いデータばかりを集めないことや、仮説思考で柔軟に考えることの重要性を学んできました。同様に、「How」についても決め打ちせず、複数の選択肢を洗い出し、判断基準を設け、重要度で比較して解決策を選ぶようにします。 A/Bテストの手法とは? また、A/Bテストについても学びました。複数の案を条件を揃えて比較し、評価する手法です。複数の案を実際に試し、反応を確認しながら仮説検証を繰り返して評価します。ある事例では、スピードが重要で3ヶ月も待てないため、同時にランダム表示を選択しましたが、条件を揃える理由に納得しました。 黒字化への挑戦は成功? ちょうど今週、この学びを生かす機会がありました。自部門の数字が黒字にならない原因を考える場面があったのです。これは長年の問題で、まだ解決に至っていません。今週の学びを基に、原因や解決案を決め打ちせず、プロセスに分解し、複数の仮説を立て、根拠となるデータを示しながら解決策に向けた対策を考えていきたいと思います。 残業時間の原因は何か? 最後に、自身の月々の残業がなぜ80時間に達してしまうのかについても、4つのプロセスを用いて考えてみることにします。さらに、Q2で記載した問題の原因について、ある程度仮説を立てています。それらの仮説が正しいかどうか、データを用いて分析することを早速始めてみます。

戦略思考入門

業務効率化のための捨てる勇気

戦略で捨てるのは? 戦略において、捨てることが重要な場合があります。そのポイントは以下の3つです。 利便性の真意は? 1つ目は、捨てることが顧客の利便性を向上させる場合があるということです。これは、自社のコア事業に全力を注ぎ、高い品質を追求することで実現します。頭では理解できても、実行するには勇気が必要な戦略とも言えます。 営業投資はどう見る? 営業に関しては、投資対効果が高いものから始めることが重要です。評価基準を数値化することで、判断がより明確になると感じました。 今の業務はどう? 現在の業務において、これらのポイントを振り返ってみました。 問い合わせ対応は? 1. 顧客の利便性を増すために捨てることについては、問い合わせ対応に多くの時間が割かれているため、これを既存の問い合わせ窓口に集約できないか検討しています。 委託業務は見直す? 2. 惰性に流されないためには、委託している業務の見直しが必要です。より専門性の高い業者に業務を任せるか、専門性が求められる部分を切り出して他の業者を検討することを考えます。 専門分野は任せる? 3. 専門的なことは専門家に任せるという考え方ですが、私はこの考えをかなり実践できていると思います。会社内でもこの考え方が浸透しており、自社内だけで問題を解決しようとしない姿勢が取られています。 改善策は何かな? 問い合わせ内容の分類を行い、既存窓口で対応可能なものについては問い合わせ先を変更することを考えています。また、業務委託内容を詳細に見直し、専門性が必要なものと一般的に行える作業を分類します。複数の派遣会社に求められるサービスの構築を相談し、見積を取得して現行の業務委託費用と比較可能な資料を作成します。

データ・アナリティクス入門

仮説から挑む数字の物語

仮説はどこから来る? 分析の基本は、まずさまざまなデータを比較することにあります。細かなデータやグラフを確認する前に、自分なりの仮説を立てることが大切だと感じました。 3つの軸は何が違う? ここでは「プロセス」「視点」「アプローチ」という3つの軸が重要です。プロセスでは、目的を明確にし、仮説を立て、データを収集して、その仮説を分析により検証します。視点については、インパクト、ギャップ、トレンド、ばらつき、パターンなどに着目します。そしてアプローチとして、グラフや数字、数式を活用する方法が挙げられます。 可視化で何が分かる? 比較のための可視化には、数字に集約する方法、目で見て把握できるようグラフ化する方法、さらには数式にまとめる方法があり、状況に応じて適切な手法を選ぶことが効果的です。 代表値はどう見る? また、データを見やすくするためには「代表値」と「分布」を確認することがポイントです。代表値には単純平均、加重平均、幾何平均、中央値などがあり、ばらつきを把握するには標準偏差が有用です。特に、95%のデータが含まれるという2SDルールは、分析の信頼性を判断する際に役立ちます。 ノーム値は意味ある? クライアントのノーム値を算出して、予算シュミレーションに活用する手法も魅力的です。さらに、業界ごとにどの枠が効果的か比較検証することで、より適切なアプローチを模索することが可能だと思います。 実数値で検証できる? 実際のデータを利用してノーム値を算出する試みは、非常に価値があると感じます。社内にある関連データの算出方法や分析手法を参考にしながら、実数値での検証を進めることで、より実践的な知見が得られるでしょう。
AIコーチング導線バナー

「比較 × 判断」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right