デザイン思考入門

とことんユーザー体験を追求する

ユーザー体験はどう感じる? 金融機関で個人株主向けのサービス開発に携わる中、金融機関であるがゆえに自分自身で個別銘柄の株を購入できず、ユーザーとしての体験がなかなか得られない状況です。一方、投資信託は購入可能ですが、商品が多岐にわたるため、ある程度ユーザーターゲットを絞る必要があると感じました。 夢中になる理由は? また、業務から離れて、自分が真に夢中になれることを事業化するシナリオを考えると、デザイン思考の本質により迫れるように思います。現在の業務ではユーザー体験を得にくいため、一言で言えば「とことんユーザーになる」ことが大切です。そして、チームは多様な専門性を持つ少人数体制が理想的だと考えます。こうした視点は、現職での取り組みとは対極に位置しており、職場でのデザイン思考活用には伸び代が限られていると感じました。

戦略思考入門

日々の意識が未来を創る

全体振返りで何を感じる? 今週は全体の振り返りを行いました。本講座では、ありたい姿に向けてどのように進め、実現の確率を上げるかについて学びましたが、既に忘れかけている項目があることに気づき、日々の意識がいかに大切かを改めて感じました。 成果施策の効果は本当? 数字で成果が見込みやすい施策については、現状の取り組みが本当に効果的かどうかを再評価し、その上で必要な改善を行っていきます。一方、要員の育成など成果が数値に現れにくい施策に関しては、シナリオ作りからフレームワークを再度適用する方針を明確にして取り組むこととします。 日々の業務意識はどう? また、Q1の回答にも記載しましたが、使わなければ忘れてしまう内容に対しては、皆さんが日々どのような意識で業務に取り組んでいるのかを再確認することが重要だと考えます。

マーケティング入門

効率だけじゃない、心の体験

感情価値を追求する理由は? 昨今の市場環境では、単に機能的価値を提供するだけでは顧客を満足させることが難しくなっています。顧客満足を実現し、真の差別化を図るためには、「体験」という情緒的価値の追求が欠かせません。 業務効率と情緒的価値は? 私の業務は、効率化や業務圧縮を目的としたツールやシステムの提供が中心ですが、その先のクライアントに対して情緒的価値を届ける意識を持つことが重要です。 多様なニーズに応えるには? また、社内の複数のステークホルダーを顧客として捉え、日々の業務依頼を通してそれぞれのニーズや課題に応えることを心がけています。 体験で業務改革は? BPOやBPR業務においては、顧客に「楽になった」という体験を提供することが本来の目的であることを忘れず、今後も業務に取り組んでいきます。

クリティカルシンキング入門

効率的な課題特定で未来を創る

どう考えて選ぶ? 相手にメッセージを伝えるためには、何をどのようにすべきかを明確にすることが重要であると学びました。また、課題を的確に特定することが、すべての基本になると思います。今後は、明確に課題を特定し、自分が直面している問題をしっかり考える習慣をつけたいと思います。 なぜすり合わせる? 毎日多くの業務をこなす中で、深く考える時間が取れていないのが現状です。このままでは、さらに仕事が増えてしまうと感じています。そこで、ミーティングでは課題解決や共有すべき内容をしっかりすり合わせたいと思います。 どの議題を用意? 毎週行われるミーティングでは、事前にどのようにディスカッションを進めるか、何を課題として捉えるかを準備しておこうと考えています。適切な議題設定とその活用を通じて、実践していきたいと思います。

クリティカルシンキング入門

固定概念を打ち破る3つの視

思考の枠は変わる? 無意識のうちに人は自らの思考を制約してしまい、それぞれに独自のクセがあると実感しました。ワークを通じて、視点、視座、視野を変えて物事を客観的に捉えることで、本質的な課題や解決策を導き出せる可能性を体感できた点は大変印象的でした。また、MECEの考え方に触れ、具体と抽象の間を行き来する手法の有用性についても学ぶことができ、非常に参考になりました。 実務でどう活かす? 顧客向けのプレゼンテーション資料作成や社内ミーティングといった実務の場面で、今回学んだ3つの視とMECEの考え方が活かせると感じています。今後は、課題に取り組む際に常にこれらのアプローチを頭に留め、業務上で一定の答えが出た後も思考を停止することなく、継続的に問いを立てながらクリティカル・シンキングを定着させていきたいと思います。

データ・アナリティクス入門

仮説×データで未来が変わる

仮説とフレームワークは? 本講座では、問題解決のプロセスにおいて、スピードと精度を向上させるために、仮説を立てながら分析を試みる重要性を学びました。また、3Cや4Pといったフレームワークを効果的に活用する方法も理解できました。 必要データはどうする? 仮説に基づいて必要なデータを抽出し、場合によっては新たにデータを取得する必要があることも実感しました。既存のデータ分析にとどまらず、サーベイの実施などによって分析に不可欠な情報収集にも役立てることができると感じました。 多角的観点は何故? さらに、分析の視点は単に数値やデータを検討するだけでなく、データ整備や企画立案の段階でも重要であるという気づきを得ました。今後、業務のあらゆる場面でこれらの視点を取り入れながら取り組んでいきたいと思います。

データ・アナリティクス入門

データ分析で仮説と検証を学ぶ

仮説の立て方を見直すには? 今まで、データ分析において仮説から検証のプロセスをなんとなくで行っていたが、複数の仮説を立てることや、網羅性を持たせることはあまり意識していなかった。また、立てた仮説の検証だけでなく、反対の事象を裏付けるデータも収集することで、より説得力のある仮説検証ができる点も意識すべきだと感じた。 データ分析を業務にどう活かす? 今後、業務でデータ分析を行う際には、仮説立てから検証までのプロセスを意識的に組み込むようにしたい。現在取り組んでいる運転資本の改善についても、問題がどこにあるのか(Where)を仮説立てし、既存のデータから分析を行うようにする。そして、Whereが特定できた後には、なぜその問題が生じたのか(Why)の仮説を立て、その仮説を立証するための分析方法を検討するつもりだ。

データ・アナリティクス入門

仮説実践!即断で未来を掴む

効果測定は本当に? A/Bテストの実施により、短期間で効果測定が可能であることを実感しました。一方、単にデータ収集に時間をかけるだけでは、必ずしも問題解決には結びつかないということが分かりました。 分析時間は適切? 業務を進める際、初めはデータ分析から始めることが多い中、分析に時間をかけすぎる傾向があると感じています。一定量のデータが得られた段階で、迅速に仮説を設定し、追加の分析が必要かどうかを判断するか、実行フェーズに移行するかを見極めることが重要だと学びました。 行動開始のタイミングは? このコースを通じて、仮説に基づき行動に移すタイミングの大切さを再認識しました。今後は、データ分析に没頭しすぎず、適宜ストップしながら、仮説思考を軸にした実践的なアプローチを心がけたいと思います。

クリティカルシンキング入門

グラフで魅せる伝え方の秘訣

グラフ選びは何が肝心? キーメッセージに合ったグラフ選びが大切です。まず、読んでもらうために、キーメッセージの工夫を重ねる必要があります。抽象的な内容ではなく、具体的なメッセージを用いて、上司や顧客に何を伝えたいかを明確にすることが求められます。 スライドの心得は? また、何のためのメッセージなのか、細部まで考えたうえで資料を作成することが重要です。作成する際には、本当にこのスライドで良いのか、読み手に分かりやすい文章になっているかを意識し、今後のアクションや示唆も資料に落とし込むように努めます。 日々の見直しはどう? 日々の業務においても、必ずキーメッセージを念頭に置いて文章や資料の作成を行います。どのスライドも、この内容で問題がないか、無駄な部分がないかを常に検討することを心がけています。

リーダーシップ・キャリアビジョン入門

共に育む自然なリーダーシップ

リーダーの本質はどうなる? リーダーシップは、特別な才能ではなく誰にでも備わっているものであり、状況に応じて自然に発揮されるものだと実感しました。何よりも、リーダーとなるためにはフォロワーが存在し、共通の目標を持って行動することが必須であると感じます。 方向性はどう共有する? 私自身は、まず自分が思い描くイメージをできるだけ具体的に示し、部下や同僚と同じ方向性を共有することを心がけています。その結果、皆が何をすべきかが明確になり、各自が行動に移しやすくなると考えています。 障害はどう解決する? また、共有した目標に対して生じる困難や不明点があった場合は、積極的に意見を聞くようにしています。これにより、障害となる要因を迅速に取り除き、スムーズな業務遂行につなげることができると実感しています。

クリティカルシンキング入門

振り返りから見える成長の瞬間

自分で手を動かす意義は? 与えられたデータをただ眺めるだけでなく、必ず自分自身で手を動かし、さまざまな観点から検討することが大切です。一つの切り口だけでは見落としがあったり誤った結論に至る可能性があるため、複数の視点をもって仮説を立て、検証する必要があります。まずは、全体をどのように定義するかを明確にしてから、データの分け方を考えてみてください。そして、その考え方が本当に正しいのか疑う姿勢も忘れずに持つようにしましょう。 データが提案の鍵か? 通常の業務でデータを扱う機会があまりない場合には、まずクライアントとの会話の中で参照できるデータについて触れてみると良いでしょう。提案の際、市場や現状の理解を示すためにも、データを活用しながら仮説をもとにさまざまな切り口で検証していくことが求められます。

データ・アナリティクス入門

AIコーチングで広がるグループ学び

グループの雰囲気はどう感じた? 初回は緊張しましたが、グループワークでは話しやすい雰囲気で進行できたため、大変助かりました。また、AIコーチングによる問いかけが非常に面白く、考えるきっかけとなりました。 研修効果は本当に測れた? 研修効果の測定に向けては、既存の受講アンケートで収集した定性・定量データを十分に活用できていないと感じています。今後は、受講者の満足度アンケートや受講前後の評価、テストスコアの推移を分析し、研修プログラムが成果につながっているのかを検証していきたいと考えています。 業界のデータはどう活かす? さらに、各業界におけるデータの利活用方法や、これからの取り組み動向についても知りたいと思っています。その情報を基に、自社や業務への取り入れ方を検討する参考にしたいです。

「業務 × 本」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right