クリティカルシンキング入門

問題解決の秘訣:イシューを特定せよ

どの問題から解決すべきか? 問題があると、複数の解決すべき課題を同時に考えてしまい、何から着手すればよいか分からなくなることがあります。しかし、問題を分解し、「今ここで答えを出すべき問い(イシュー)」を特定して、その解決策をまず考えることが大切です。例えば、某飲食チェーン店では、客数の増加に取り組んでから単価を上げるための施策を考えた結果、成功を収めました。もし逆の順序で進めていたら、客足が遠のく可能性がありました。 イシューを特定するポイントは? イシューを特定する際には、次の三点に気を付けるべきです。まず、「問い」の形にする(疑問形)。次に、具体的に考える(壮大すぎる問いにしない)。最後に、一貫してイシューを押さえ続ける(話がそれないようにイシューを何度も確認する)。 業務効率化の鍵はどこに? 業務効率化を提案する際には、まず効率化を図るべきイシューを特定し、それをチーム内で共有します。これにより、何を根本的に解決したいのかを全員が認識し、効果的な方法を見出すことが可能になります。例えば、時間がかかっている業務がある場合、1点に集中して効率化を図ると、別のところで時間がかかってしまうことがあります。これを防ぐためにもイシューの特定と共有が必要です。 問い合わせ増加への対応策は? また、日々の業務改善や問題解決には、具体的なイシューを見逃さないことが重要です。たとえば、ある問い合わせが例年より増加している場合、その原因を探るために情報の掲示方法や他の根本的な問題を検討する必要があります。普段より対応件数が増えていると感じた場合も、その違和感を無視せず、根本的な問題を特定し、それを解決する方法を考える時間を作ることが求められます。場合によっては、同じような問い合わせに対する対応時間が短縮されるかもしれません。 チームにおけるイシュー共有の重要性 常にイシューを意識し、その解決策を探る姿勢を持つことが、業務の効率化や改善につながる重要なポイントです。イシューを共有することで、チーム全体が同じ認識を持ち、一丸となって問題解決に向かうことができるのです。

戦略思考入門

視野を広げる3CとSWOTの活用法

顧客優先は正しい? 私は営業部門で勤務しているため、「顧客ニーズ」を優先することが多く、それが視野を狭くしてしまうことがあることに気づきました。事業計画を考える際には、以下の3つの視点を持つことが重要であると感じています。 全社視点は大事? まず、経営者の視座で考えることです。自分が発言する際には、常に全社的な視点を意識しながら行動することが求められます。次に、ジレンマを過度に恐れないことです。100%正しい判断は難しいので、ベストを求めすぎるよりもベターを選択する柔軟性を持つことが重要です。そして、他人の意見をしっかりと聴く姿勢も欠かせません。 フレーム活用でどう? これらの考え方に加えて、フレームワークを活用することで、施策を客観的に考えることができ、取りこぼしの少ない計画を立てることができました。それらのフレームワークは、3C分析で顧客、市場、自社、競合を整理し、PEST分析で外的環境を考慮する手法、SWOT分析で内部環境を整理し、クロスSWOTで重要課題を抽出し、バリューチェーンで企業活動を一覧化するものです。これにより、視野が広がり、現実的な意見を出すことができました。 業務量はどう管理? また、日常業務ではアフターフォローによる業務が多く、期待が高まる中で増える業務量への対応が課題となっています。この問題についてもバリューチェーンを作成することで、どの業務に重点を置くかが明確になり、社員全員が納得しやすくなると思います。また、やることだけでなく、やらないことを決める際にもバリューチェーンは有効だと考えます。 施策はどう練る? 具体的な施策としては、自社更新率を高めるために3C分析やクロスSWOTを用いて現状の課題を明確にし、解決策を検討しています。施策を考える際には、経営者の立場で全社的な視点を持つことを心がけ、自己部署内や他部署からも意見を聴き、多角的なアイデアを引き出すことが重要と感じています。現状の業務フローをバリューチェーンで可視化し、資源の浪費を防ぎ、コストを抑えるべきポイントを特定することも進めています。

データ・アナリティクス入門

現場の知恵で磨く課題設定術

課題設定はどう考える? 今週は、データ分析の一連の流れ(問題提起、仮説設定、検証方法の決定)の総復習を行いました。特に、どんな課題を設定すべきかという初期段階での苦労から、課題設定の難しさを実感しました。適切な課題設定がなされなければ、仮説や検証の方向性も定まらず、最終的な分析の質に大きく影響することを再認識しました。また、課題設定の精度を向上させるためには、現場の声をヒアリングする、過去のデータからヒントを得る、フレームワークを活用するなどの工夫が必要だと感じました。 実務復習は何が目的? 今回の復習を通して、実務でデータ分析の流れを実践し、ブラッシュアップしていく重要性も改めて感じました。特に、業務改善や営業データの分析においては、適切な課題の切り口が成果に直結します。例えば、営業成績が伸び悩む店舗に対して「なぜ成果が出ていないのか?」と問いかける際には、「訪問件数が少ないのか」、「折衝時間が短いのか」、「既存顧客へのアプローチが不足しているのか」といった具体的な観点から検討する必要があります。適切な課題が設定されなければ、的外れな仮説から誤った改善策を提案するリスクもあるため、今後は現場の意見をしっかりとヒアリングし、過去のデータを積極的に活用する習慣をつけたいと考えています。 仮説検証はどうなす? さらに、仮説を立てた後は、実践を通じてどのようなデータが有効なのかを検証することで、より精度の高い分析フローを確立することが求められます。これによって、業務改善や営業データの可視化に対して、より効果的なアプローチが可能になると実感しました。 現場実態はどう見る? 現場の実態を正確に把握するためには、まず営業担当者の意見を聞き、「営業活動でどのような課題を感じているか」を確認することが重要です。データだけでは見えにくい実際の状況を把握するため、過去の営業データ(営業成績の推移、訪問件数、成約率など)を分析し、他店舗との比較からどの指標に差があるのかを特定します。また、フレームワークを活用して「なぜ?」を繰り返し問いかけ、根本的な課題を探ることも効果的です。

データ・アナリティクス入門

仮説で拓く!多角的学びの道

分解で何が見える? 今週の学習でまず印象に残ったのは、問題の原因を明らかにするためにプロセスを分解する考え方です。以前学んだロジックツリーと同様のアプローチで、複雑な問題も整理しやすくなる点が非常に参考になりました。 A/Bテストの本質は? また、初めてA/Bテストについて学びました。Webサイトやアプリの改善において、2つのパターンを比較してどちらが効果的か検証するこの手法は、データに基づいた改善策を決定する上で非常に有用だと感じました。 対概念で広がる視野は? さらに、対概念という考え方も学びました。対象となる事象の反対の観点を同時に考えることで、物事を多角的に捉え、より本質的な理解につながるという点が印象的でした。 患者動向をどう分析? 診療科別の患者受診動向データ分析に関する学習内容も非常に有益でした。分析の視点に差異が生じた場合に、仮説に基づいて問題解決のプロセスをWhat(問題の明確化)→Where(問題箇所の特定)→Why(原因の分析)→How(解決策の立案)のステップで進めることで、より精度の高い分析が可能になると理解しました。これまではいきなり解決策を検討することが多かったため、本質に迫った対策を導き出す点で大きな学びとなりました。 仮説と実試行は? また、現時点ではA/Bテストの具体的な活用場面はイメージしづらいものの、仮説を試しながら問題解決につなげる考え方が日々の業務にも応用できると感じています。 比較で見える分析法は? 分析の基本的な進め方については、「分析は比較である」という考え方のもと、①目的・問いの明確化、②問いに対する仮説の設定、③必要データの収集、④分析による仮説の検証というサイクルを回すことが重要だと学びました。インパクト、ギャップ、トレンド、ばらつき、パターンなどの視点にも着目し、グラフや数値、数式を用いて視覚的に分かりやすく情報を提示することが求められます。仮説思考やフレームワークを活用して多角的に検討することで、データから有益な情報を引き出し、効果的な行動につなげることができると実感しました。

クリティカルシンキング入門

問いかけで広がる学びの世界

どんな問いから始めた? 私自身、いきなり打ち手に飛び付いてしまう傾向があると反省し、まずは疑問形の問いを立てることから始めることにしています。考えている途中で「どんな問いだったか」を忘れたり、話が逸れてしまうことが多いため、問いは必ず記録するようにしています。同じ課題に取り組んでいる人がいる可能性も考慮し、問いを共有することでお互いの思考を深めたいと思っています。また、状況に応じてイシューが変わることを意識し、イシューを見直すタイミングに関しては基準を検討していきたいと考えていますが、具体的なイメージは実務の中で模索する段階です。 成果重視の目標設定は? 私の勤務先では、四半期ごとに目標設定を行っており、自身が抱える問題とその解決策の案をまとめた上で上司とすり合わせをしています。この際、「本当に四半期内に成果が出せる内容か」や「組織にインパクトがある内容か」を問いながら見直すことで、より現実的かつ効果的な目標設定が可能になると感じています。 論点はどう深掘り? また、担当領域の事業進捗については月次で実績や見込み、そして伝えたい論点を発表する機会があります。伝えたい内容を深く掘り下げるためにも、問いを立てて考察する手法が役立っていると実感しています。 根本原因を探る? さらに、同僚から相談や質問を受けたとき、従来は単に聞かれたことに答えるだけでしたが、問題の根本原因を捉えようという姿勢を持つことで、より本質的な解決へと繋がると気付きました。これらの経験から、日々の小さな気づきを記録し、業務の際に問いとして形にすることで思考を整理し、深めるように努めています。 手書きは効果的? 手書きで問いを立てることで頭の中を整理しやすいと感じるため、パソコンでの入力よりも手書きを好んで活用しています。また、問いを整理した後は、気軽に壁打ちができるように上司とのオンラインミーティングの時間を事前に設定することにしています。上司と私のオフィスが異なるため、コミュニケーションのタイミングを逃さないよう、スケジュール調整は早めに行うよう心掛けています。

データ・アナリティクス入門

データ分析で見つけた新しい視点と手法

なぜデータ分析の目的が重要? 今回の講座を通して、データ分析の方法について新たな視点を得ることができました。これまでは、やみくもにデータ分析に取り掛かりがちで、HOWにばかり目を向けていましたが、まずは目的や問題点を特定し、そのうえで分析を進める重要性を認識しました。また、複数の仮説を持ち、それを検証するプロセスも新たな学びとなりました。この講座を通じて、アウトプットの重要性も改めて実感しました。インプットしたことはすぐに忘れてしまうため、学んだことを自分の言葉にする時間を確保し、習慣化することが大切だと感じました。 データ分析のステップとは? 現業務においては、データ分析をプロセスに分けて取り組みたいと思います。具体的には、目的の設定、問題点の特定、原因の分析、解決策の検討というステップを踏むことで、自分の行うデータ分析の目的を明確にし、どのような視点で仮説を考えるべきかをシャープにしていきたいと考えています。 データ分析の型をどう身につける? また、データ分析の型を身につけたいと思います。特定の分析を行う際の型が身についていれば、データ分析の実行が容易になると感じました。例えば、特定の状況で使う分析手法をあらかじめ知っておくことで、効率的に進められるでしょう。 学びを習慣化する方法は? さらに、自身の成長のためにも学びやアウトプットを習慣化したいと考えています。講座を通じて行った振り返りやグループワークでの意見交換は、知識や思考を深める助けとなりました。これを続けて習慣にしたいと思います。 実践知識をどう高める? データ分析の実践知識についてもさらに勉強を進めたいです。他社事例などを参考にしながら、より鋭い経営分析や戦略検討ができる基盤を築けるよう努力します。 BS項目の分析はどう進む? 特に、まだ分析が進んでいないBS項目については、プロセスに則って分析し、課題解決に取り組む予定です。また、週に1度はアウトプットの日を意識的に作り、学んだことを整理し、反省点や来週の目標設定を行う時間を確保したいと思います。

データ・アナリティクス入門

ギャップに迫る!本質解明の軌跡

計画と実績はどう違う? 年間利益構造の表を見ていると、大きな数字や計画にない項目に目がいきがちですが、計画値と実績値のギャップに注目し、どの項目がどれだけ影響しているのかを把握することが重要だと感じました。 何を見落としている? また、これまで主体的にHowばかりを考えていた自分に気づかされました。さまざまなアイディアが出やすいからこそ、関係者全員が納得するHowを見出すためには、最初に【What】問題の明確化、次に【Where】問題箇所の特定、そして【Why】原因の分析、最後に【How】解決策の立案というステップを確実に踏むことが大切だと理解しました。 理想と現実は何が違う? さらに、業務でKPIを設定する際に、全国平均に頼るだけでなく、「あるべき姿」と「ありたい姿」という二つの視点の違いに気づく機会がありました。現状の分析で「あるべき姿」に留まるだけではなく、自分自身が描く理想の「ありたい姿」まで意識してKPIに反映させたいと強く感じました。 KPI改善は何から? 健康経営やエンゲージメント向上、女性活躍推進、男性育休推進といった分野では、現状分析、KPI設定、課題解決、施策の立案・実行を数値に基づいて進めることが求められます。いずれの場面でも、【What】、【Where】、【Why】の各視点で問題を正確に捉えた上で、【How】の提案を行うことが不可欠と実感しています。 具体的には、健康経営におけるKPIの見直しとして、まず現在設定しているKPIの現状を確認し、数値やグラフでギャップを明らかにしました。次に、相関するKPIの状況を把握し、どの指標が課題となっているかを明確にしました。加えて、多くのKPIの中から、進捗が思うように進んでいないものや他の進捗を阻むものを特定し、専門家の視点を参考にしながら原因を分析しました。その上で、現行のKPIが適切かどうかを再検証し、「あるべき姿」と「ありたい姿」を改めて確認しました。最後に、課題の原因に対して具体的な解決策を検討し、実行可能な施策へと落とし込むプロセスを実践しました。

データ・アナリティクス入門

仮説検証で見つける成長のヒント

どう仮説を練る? 前職で教えられた問題解決の手法は、実践する機会が十分にありませんでした。仮説を立てる際、まずは現状把握が最も重要であることを再認識しています。一つの仮説に直感的にたどり着くことはありますが、そこに固執せず、ほかの可能性も考慮した複数の仮説を検討することが、根拠のある仮説を生み出すポイントだと感じています。 検証の切り口は? 動画の一例で「仮説と検証を繰り返す」という考え方が大変印象に残りました。これまでにも同様の手法を試みたことはありましたが、せいぜい数回で終わってしまい、検証の繰り返しが十分ではありませんでした。そこで、自分自身の検証と例で示された検証方法との違い、たとえばアプローチの切り口などについて、改めて考えてみることにしました。 枠組みの意外性は? フレームワークに基づいて検証する方法も、抜け漏れのない仮説を構築できる可能性を秘めています。フレームワークを利用することで、新たな発想や類推が生まれることが期待できる一方、自由な発想では偏りが生じやすく、適切な仮説検証が難しいと感じています。 時間がかかる理由は? また、他の社員と比べて明らかに時間を要している業務があります。正直なところ、その業務が自分に合っていない、あるいは心理的に好ましくないという言い訳をしてしまっていました。しかし、他者との比較を通じて何が原因なのかを見極め、行動に入る前の準備段階に問題がないか、あるいは結論から逆算したアプローチができているかを、仮説の検証とシミュレーションで実際に検証しているところです。 取り組みは十分? これらの対策は現在進行中です。現状を正確に把握し、問題点を見極めた上で、重要な局面で目指すべき状態や、そもそもやるべきことが実施できているかを確認しています。業務は忙しく時間的制約もありますが、抜け漏れがないか、逆算して工程を検証する取り組みを並行して行うことで、苦手な業務の改善につなげたいと考えています。もしうまくいかなかった場合は、さらなる仮説を立てて改善に取り組んでいくつもりです。

クリティカルシンキング入門

データ分析で視点を広げる新発見

加工と分解はどう? データ分析において、「加工」と「分解」を行うことで解像度が上がり、課題や原因究明につながることが分かりました。さらに、一つの加工や分解方法ではなく、複数の切り口を持つことで別の視点から見ることができ、新たな気づきを得られる点も印象に残りました。「迷ったときはまず分解してみる」ことで、前に進めることができるというのは非常に大きな発見です。ただ考えるだけでなく、加工や分解といった方法を用いて視覚でも考えることを進めていきたいと思います。MECEという概念は理解していたつもりでしたが、「全体を定義する」という視点が欠けていたことで、実際にはMECEになっていなかったと気づかされました。week1で学んだ内容を振り返りつつ、week2で得た気づきを定着させていきたいと感じています。 プロセスをどう見直す? 企画営業の立場として、入口から出口までのプロセスのどこに課題があるのかを分析し、打ち手を考えることが求められます。しかし、これまで分解の切り口が不足していたため、改めて入口から出口までの流れを見直し、どの部分で数字の変化があるのか、またその数字をどう分解できるのかを考え直したいと思います。自分自身、目の前の数字や事象に飛びつく癖があり、思考が浅いと感じるので、データの加工・分解を活用して視覚的にも情報を整理し、思考を広げていくことを意識していきます。また、グラフや表を用いることは、数字以外の業務でもバリューチェーンを理解するなどの方法として活用できると感じましたので、データに限らず、他の業務にも応用できるかを考えていきたいと思いました。 会議資料はどう作る? 直近の会議に向けて、最新の数字を用いた資料作成を行いたいと思います。入口から出口までで何が行われ、どこに課題があるのかを表やグラフで検証し、結果を反映させていきます。企画営業として、数字を日々扱い、その改善策やさらに数字を伸ばす施策の検討も業務の一部であるため、今回の学びを次回の会議から早速活かせるよう準備を進めていきたいと思います。

戦略思考入門

固定費を減らす!経済性活用術

経済性の学びは何を示す? 「規模の経済性」「習熟効果」「範囲の経済性」「ネットワーク経済性」「経費の経済性」について学びました。特に固定費の分散という考え方はあまり活用してこなかったため、強い印象を受けました。稼働率の向上が一単位あたりの固定費を下げることに繋がるという視点は、自社の現状把握に役立てたいと考えています。また、習熟効果には経験曲線の飽和があることから、イノベーションだけでなくテクノベートの追求も重要だと感じました。 [総評] 「規模の経済性」と「習熟効果」についての理解が明確で、固定費の分散を自社の現状把握に活かす姿勢が特に優れています。さらに、多種多様な事例に適用して知見を深めると良いでしょう。 さらなる思考の追求は? [さらに思考を深める問い] - 自社の状況に応じて「規模の経済性」をどのように活用できるか考えてみてください。 - テクノベートとイノベーションの違いをさらに深堀りし、それらがどのように相互作用するのかを検討してみてください。 [最後に] 今後も学んだ概念を具体的なビジネスの場面に応用し、独自の視点を広げていってください。これからも頑張りましょう! 範囲の経済性はどこに活かす? 薬局の開局経験を、運営で共通点の多いクリニックの開設に活用したり、介護業界への参入に役立てている弊社では、範囲の経済性が効いている部分があることに気づきました。ノウハウも貴重な資産であり、広い範囲で活用することで人や技術を共有でき、会社全体の労働分配率を向上させることができると感じています。 薬局業界では、労務費を抑えることが利益を維持あるいは増加させる鍵だと考えています。業務効率と生産性を上げる手法を模索する中で、テクノベートが重要であるため、設備投資の可能性を検討しています。その際、投資回収の視点を持ち、余裕ができた部分の人材活用方法を具体的に考えることで、生産性の改善が期待できます。狭い範囲に固有の固定費に固執せず、会社全体で共有できる固定費を明確化することが重要です。

デザイン思考入門

共感でひらくアイデアの扉

プロトタイプは何故有効? プロトタイプを作成することで、イメージがより具体化され、テストの段階で得られるフィードバックが非常に有益であると実感しました。性格や背景の異なる第三者に評価していただくことで、自分では気づかなかった改善点が明らかになり、製品やサービスのブラッシュアップに大いに役立つと感じました。 テストの流れはどう? また、テストのプロセスは、普段実施しているレビュー作業に似た面がありました。レビューでは、作成した提案書や設計書に対して指摘を受けつつ改善を重ねるため、限られた目的や範囲の中で行われる点が共通しています。一方、デザイン思考における「共感」「課題定義」「発想」「試作」「テスト」の各プロセスは、業務で何気なく行っている点とも重なっており、日常の仕事に応用できる部分が多いと改めて認識できました。 デザイン思考の柔軟性は? デザイン思考では、基本のプロセスの流れがあるものの、非線形に繰り返す柔軟性が大きな魅力だと感じました。議論が行き詰まってしまうリスクもありますが、「共感」や「協働」を重視することで、しっかりとコンセプトを捉え、効果的にアイデアを育てることが可能です。人間中心のアプローチやビジュアライズ・プロトタイピング、そして共感の連鎖といった視点が、より良い成果につながると理解しました。 多様な意見はどう? さらに、他の受講生が作成したプロトタイプを通じて、多様な背景を持つ人々の意外なアイデアに触れることができたのは、大変参考になりました。一人では気づけなかった発想が生まれ、異なる視点を取り入れてアイデアを育てることが、新たな解決策へとつながると実感しました。 新ビジネスは何故大切? 新たなビジネスプランを検討する際、リーダーシップやチームビルディング、経営戦略、マーケティングなど現実的な調整が必要となる中で、まずはアイデアの創出が何より重要であると再認識できました。デザイン思考で学んだ手法は、普段の業務においてもそのまま活用できる貴重なものだと感じています。

データ・アナリティクス入門

ロジックツリーで解決する新たな視点の探求

決定木と共通点は? ロジックツリーは問題解決に役立つと感じました。特に決定木と類似している点があることに気付きました。問題解決にはロジックツリーを利用し、業務フローを考えることは個人的に決定木のように解釈しています。「決定木」については、個別に確認を行ってみたいと考えています。 分解手法は何が違う? 層別分解については、粒度を揃えて階層毎に記載し、全体的な視点で考えることが重要だと感じました。変数分解では、細分化することで解決策を検討することが可能となります。 フロー分析は有効? 私は業務フロー分析を行い、RPA(自動化)のタスクを考えることがあります。問題解決プロセスを活用して、層別分解を業務フローに応用してみようとしています。 変数分解を深める? 変数分解は、利用頻度が低かったため、まだ理解が浅いと思います。すぐに実用できるアイデアは浮かびませんが、望む結果に至らなくても、試行錯誤を続けて活用できるよう努力したいです。 集計から何を探る? データ集計の結果を元に、ロジックツリーを用いて、漏れや重複をなくすだけでなく、別の観点での検証が可能かどうかを探りたいです。 KPI改善の鍵は? KPIのデータ集計結果において、乖離や数値の増減があった場合には、ロジックツリーを使って分析しています。MECEをベースに、問題解決に向けた改善活動に取り組んでいます。改善活動自体にもロジックツリーを適用してみることを考えています。 他チームの意見は? 他チームの分析結果にもロジックツリーを用いて、新しい視点が得られるかを検証したいです。他チームの報告を聞く際、通常は前提が正しいという説明を受けますが、その場で疑いを持っても、すぐに相違点を指摘するのは難しいです。 日常でどう活かす? 日常の業務において、データ分析以外にもロジックツリーを様々に適用し、考える習慣を試してみます。活用範囲を広げ、新たな気づきやスキルを獲得できればうれしいです。

「業務 × 検討」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right