マーケティング入門

顧客の声が導く業務革新

マーケティングの本質は? 今回の講座では、マーケティングの基本要素である「何を売るか」「誰に売るか」「どう魅せるか」を体系的に理解できました。単なる商品提供ではなく、顧客の潜在ニーズやペインポイントを掘り起こし、体験価値を創出するプロセスであることを再認識しました。行動観察、デプスインタビュー、STP分析などの手法を学び、差別化戦略やイノベーション普及の要件、さらには内部顧客視点の重要性にも気づくことができました。 バックオフィスの変革は? また、自身のバックオフィス業務において、従来の補助作業から脱却し、営業店や社内を「顧客」として捉え、価値提供に取り組む必要性を実感しました。業務プロセスを「スピード×正確性」や「コスト削減×利便性」といった複数の軸で再設計し、数値や具体例を用いて価値を明確に伝えることが求められます。この取り組みにより、内部顧客の安心感や満足度が向上し、全社的な競争力強化にも寄与することが期待されます。 業務改善の策は? 今後は、まず日々の業務終了後の振り返りや小規模なPDCAサイクルの実施に取り組み、データ分析を通じて業務効率やペインポイントを定量的に把握していきます。さらに、マーケティングの視点を取り入れたセグメンテーションやポジショニングの再検討、具体的な業務プロセスの改善策を検討し実行する予定です。同僚とのディスカッションやフィードバックも積極的に活用し、持続的な改善と成長を目指していきます。

データ・アナリティクス入門

ギャップに気づく未来への一歩

どのようにギャップ認識? 問題解決のプロセスについて学んだことで、現状と理想(あるべき姿、ありたい姿)のギャップを明確に把握する重要性を実感しました。現状が理想に達していない場合はまず「あるべき姿」を定め、さらに改善を目指す際には「ありたい姿」を設定するという考え方は、今後の業務に大いに役立つと感じています。 どう分類を柔軟に? また、ギャップを特定する際には、MECE(漏れなく、ダブりなく)を意識することが推奨される一方で、状況に応じて「その他」の分類も柔軟に取り入れることが大切だと学びました。単なる分類に終始するのではなく、実際に意味のある分別ができるよう努める必要があると考えます。 何故課題整理が必要? この学びは、データ分析の課題設定において非常に有効です。分析に取り組む前に、まず現状と理想のギャップを整理することで、的確な課題設定と見落としの防止が図れます。さらに、他の人が設定した課題についても、自分なりの視点で再考し、改善点を見つける習慣を身につけることが重要だと感じました。 どのような目標管理? 実際の業務だけでなく、目標設定やソフトウェア導入の検討プロセスにも応用できるこのスキルは、定期的な進捗確認や必要な修正を行うことで、最適な状態を維持するのに役立ちます。自分で設定する課題や目標だけでなく、チーム全体で意見を共有し、ディスカッションすることで、より本質的な問題解決へとつながると期待しています。

クリティカルシンキング入門

学びを深めるための日本語の指南

正しい文章はどう作る? 日本語を正しく使うためには、書籍を読むことで文章に触れる機会を増やす必要があると感じました。元の文章に影響されて主語と述語が混乱することがあるので、まず何を言いたいのかを明確にし、その上で日本語が正しいかどうかを確認しながら文章を組み立てることが重要だと考えています。 説得の秘訣は何? 伝える上で、説得する相手が何を求めているのかを考慮し、それに基づいて行動していきたいです。説得に必要な要素を多角的に考え、整理する能力を持ちたいと思います。研究が必要な部分がある場合、それも含めて多方面から案を出し、検討することが重要だと感じました。 なぜ文章を確認? 日本語の正確さを求めるため、ブランディング業務としてプレスリリースやSNS、チラシなどの文章を確認しています。 ピラミッドの効果は? ピラミッドストラクチャーは説得や施策検討のほぼすべてのシーンで活用できると考えています。最近の業務では、CM効果の検証やアンケート制作において、この手法を活用したいと考えています。 伝わる文章の秘訣は? 主語と述語を意識し、言いたいことが明確に伝わるように心がけます。また、相手の説得ポイントを意識し、それを軸に伝えることを今後意識していきます。施策検討などで自分の考えをまとめる際には、要素を包括的に分解し、前回学んだMECEを用いてダブりや漏れがないか確認することを心掛けます。

データ・アナリティクス入門

数字とロジックで捉える課題解決

問題点の整理はどうする? GAILを通じて、問題点の洗い出しが不十分であると痛感しました。直面している課題や状況を明確に言語化することがまず必要であり、そのためには「あるべき姿」と「現状」とのギャップに着目して問題点を整理することが重要だと学びました。たとえば、「なぜ赤字なのか」「なぜ生徒が集まらないのか」といった問いから、まずは数字に基づいて優先的に解決すべき問題を特定し、次に具体的な解決策(how)を検討するプロセスが非常に参考になりました。 計画実績のギャップは何故? また、販売実績や利用状況の分析時には、「なぜ計画に対して実績が出ないのか」「目標に対して利用状況がどのように乖離しているのか」という問いを持つことはもちろん必須ですが、さらに、どの業態の顧客が利用しているのか、あるいは利用していないのかといった具体的な観点から問題を深掘りすることも大切だと感じました。いきなり解決策に飛びつくのではなく、what(現状把握)→where(問題箇所の特定)→why(原因の追究)→how(解決手法の検討)の流れを大切にすることが、問題解決への着実なアプローチだと考えています。 MECE活用は有効? さらに、問題解決プロセスをきちんと踏む上で、MECEの考え方は非常に有効であると実感しました。その一環として、ロジックツリーを活用しながら実績の分析を進める手法は、今後の業務にも積極的に取り入れていきたいと思います。

データ・アナリティクス入門

数値が導く学びの冒険

数字はどう見える? まず、数字の見方について考えると、仮説を立てた上でデータを収集し、その後の分析で仮説の検証を行うという流れが基本だと感じました。AIを使って情報を収集する場合でも、自分なりの考えを持ち、AIから得られた情報と自分の意見を照らし合わせることが大切です。もしも自分の予想と結果が異なった場合、その違いがどこから生じたのかを考えることで、新たな学びのヒントが得られると実感しています。 代表値はどう見る? 次に、データの見方としては、代表値に注目しました。単純平均、加重平均、幾何平均、中央値など、データの性質や目的に応じて使い分けることが必要です。また、散らばりを示す指標としては標準偏差があり、これらの数値をグラフ化することで、直感的に状況を把握できる点も魅力的だと思いました。 業務の数値活用は? 普段の業務では、商品の売上や原価、コストダウンの検討などで、いろいろな平均値を算出することが新たな発見につながるのではないかと感じています。そして、その結果を他者に説明する際に、グラフを活用することで、理解を深め、合意形成をスムーズに進めることができると確信しています。 AIで何を発見? 日常の業務の中で、実際に数値をAIに入力して計算やグラフ化を試みることで、これまで気づかなかった事実や見逃していた視点を発見できるのではないかという期待があります。来週には、何かの案件で試してみるつもりです。

データ・アナリティクス入門

現場で磨く仮説思考の実践

具体的演習の魅力は? 総合演習の課題解決は非常に具体的で、これまでの演習と比べると、より深い検討が求められる良い機会となりました。 フレームワーク使用法は? 仮説を考えるプロセスでは、思考の幅を広げるためにフレームワークの活用や対概念の取り入れ方が提示されました。しかし、現時点ではフレームワークの使いこなしが十分ではないと感じ、今後の日々の活動の中で意識的に取り入れていきたいと思います。 A/Bテストの効果は? また、A/Bテストを活用して早期にアクションを起こすことで、得られたデータをもとに仮説をさらに精緻化する取り組みも印象的でした。Web関連の利用場面では活用しやすい一方、現業務にすぐ生かすことは難しいと感じたため、二つの選択肢の中から比較しながら適した選択を見つけるアプローチを取り入れたいです。 問題解決の流れは? 問題解決については、問題に至るまでの流れをプロセスに分解し、どの段階に原因があるのかを明らかにする手法が有効だと実感しました。解決策を検討する際にも、複数の選択肢を洗い出し、根拠をもって絞り込むことの重要性が伝わってきました。 現場実行のコツは? 現在の業務では、大規模なデータ分析による示唆を提示するよりも、現場に近いところですぐに施策を実行することが求められていますが、仮説思考に基づいて複数の仮説を立てた上で行動に移すプロセスを意識的に実践していきたいと考えています。

戦略思考入門

戦略思考で拓く新たな自分

目標と現状の接点は何? 戦略的思考とは、まず目標と現状の地点を明確に設定し、その間を最短距離で結んでいくことだと学びました。普段、プロジェクトを進める際にはクライアントからの要望に応じて、発生するタスクをいくつか洗い出し、その中でも特に時間と関係者が必要な作業をクリティカルパスとして最優先に取り組むようにしています。 実行と省略の理由は? また、戦略とは何を実行するかを選ぶだけでなく、何を実行しないかを決定することでもあると感じました。クライアントのリクエストを中心に作業を進め、要望がない部分は最低限のアウトプットを目標にする方法は、事業戦略の現場でも重要な考え方だと思います。不要な検討事項をなぜ省くのかを論理的に整理し、説明できることも求められる点に納得しています。 日常への戦略的活用はどう? さらに、日常の様々な場面でも戦略的思考は活用されています。現在、転職活動中という身で、必要な資格取得やスキルの習得に向けて戦略的なアプローチを実践していると感じます。また、面接に備えてこれまでの業務経験や実績、強みを論理的に整理し、わかりやすく説明できるよう努めています。 整理された思考はどう生かす? これまで無意識に行っていた思考を俯瞰し、論理ツリーなどの手法を取り入れて整理することで、今後の業務においてより幅広く深い視点を持つ戦略的な考え方を身につけられるよう、本受講を進めていきたいと考えています。

データ・アナリティクス入門

ロジックで拓く成長の一歩

何故手順を明確に? これまで「何となく」で進めていた問題解決のステップについて、今回あらためて「What, Where, Why, How」を意識する重要性を実感しました。手順を明確にすることで、全体の流れが整理され、取り組みがより効果的になったと感じます。 現状のギャップは? また、日常業務においてしばしば指摘されるように、「あるべき姿(目標)」と「現状」とのギャップが課題であるという考え方は、自分自身の問題発見力の不足を強く意識させる要因となっています。全体的な視点で課題を捉えたつもりでも、見えていない問題が存在する可能性があるため、ロジックツリーやMECEといったフレームワークの有用性を改めて認識しました。 遅れはどう取り戻す? 実際、現状では採用目標(ありたい姿)に対して採用実績が未達の状況です。今月である第3四半期が締まり、来月から第4四半期に入るため、これまでの遅れをどのように取り戻すかについて、ロジックツリーやMECEを活用して具体的な施策の検討に結びつけたいと考えています。 どんな課題に挑む? 具体的には、以下の点について課題を追求していきます。 ・母集団形成がうまくいっていないため、応募を阻害している要因や、求人票を見ても応募に至らない理由の究明 ・先月と比べて書類選考通過率が大幅に低下しているため、不合格となる要因の分析 ・面接実施率を向上させるための施策の検討

クリティカルシンキング入門

フラットな視点が拓く未来

データの説得力は? データに基づいて論理的に導き出された方策には、数ある手法の中でも特に説得力があり、実践する際に効果が期待できると感じました。 本質はどこにある? チームで分析を進める際、議論が拡散して本来の問いを見失わないよう、得られた事実に対して丁寧に目を向けることが重要だと実感しました。実際の業務では、頭の中にある既定の原因や方策にとらわれず、フラットな姿勢でデータと向き合う意識を持つ必要があると感じています。 仮説の進め方は? また、全ての要素を網羅的に分析し、一つひとつ順番に確認する方法は非効率であるため、仮説を立てた上で優先順位を意識しながら進める手法の重要性を改めて認識しました。 満足度の裏側は? 年に一度、事務局を務める競技会の満足度アンケートを通じ、数値では明確に分解できないフリーコメントを整理・分類することで、参加者の満足や不満を体系的に把握することに努めています。その結果からイシューを特定し、真の原因へアプローチする方策を検討する意識が養われました。 チーム視点は整う? さらに、日常業務においても、チームメンバーとイシューに対する視点を合わせ、要素を丁寧に分解することが大切だと考えています。問いかけを通してメンバーの意見を引き出し、原因や方策を決めつけることなく、常にフラットな視点で課題に向き合う姿勢を心がけたいと思います。

データ・アナリティクス入門

問題解決力の高め方がわかる最高のストーリー

問題解決手順をどう進める? 問題解決のプロセスは、「What→Where→Why→How」の順で進めることが重要です。特に「How」の段階では、課題に対して複数の仮説を立て、それに基づいて具体的な対策(打ち手)を検討します。この際、効果、コスト、スピードなどの枠組みを用いると視覚化しやすくなります。 効果を測定するための方法は? 効果を測る方法としては、ABテストが有効です。ランダムにユーザーを対象としてテストを行うことで、より効果的な対策を実証できます。 打ち手を評価する際の注意点は? また、打ち手を検討する際には、決定要素を洗い出し、各項目に対してメリットとデメリットを評価します。仮説をもとに打ち手を考える際も、常に比較する意識を持つことが大切です。必要であれば、再度ABテストを行い、効果が高い対策を実施します。 プロジェクトで重視すべきポイントは? プロジェクトにおける課題解決業務においては、次のポイントを重視します。まず問題解決のプロセスを意識して、問題の所在とその本質的な要因を明確にします。その上で具体的な打ち手を考え、その効果を検証します。この状況でABテストが必要であれば、実施します。 新企画の決定基準はどう定める? さらに、新しい企画や打ち手を考える時は、決定の基準となる枠組みを明確にし、比較を行います。これにより、異なる打ち手の粒度を均一にし、論点を具体化します。

クリティカルシンキング入門

考えを広げるためのクリティカル・シンキングの重要性を学ぶ

発想の制約から解放される方法は? 自由に発想できるにもかかわらず、人は無意識のうちに考えを制約してしまうことを知りました。理解していても制約や偏りは起こるため、これを防ぐためには「頭の使い方」を知ることが大切だと学びました。この「頭の使い方」はクリティカル・シンキングで学ぶことができるので、今回の6週間の受講を通じてしっかり身に付けたいと思います。また、各演習や皆さんの発表を聞く中で、自分の考えの浅さや視野の狭さにも気づかされました。 企画力を高めるために何をすべきか? 自分の考えを客観的に眺め、自問自答することで徹底的に深掘りを行いたいです。徹底的に深掘りをし、考え抜くことで、自分自身の考えに自信を持ち、発信時にも堂々と伝えられるようになりたいと考えます。 業務の目的をどう見直す? 自組織の運営を行うにあたり、既存業務の効率化や廃止を検討する必要があります。ただ効率化や廃止を行うのではなく、その業務の目的を含めて考えることが重要だと感じました。 業務において何かを考えたり発言したりする際には、「自分の思考を客観的に眺め、チェックすること」「なぜを繰り返すこと」を習慣化したいと思います。また、自組織において上司や他のメンバーと個別に話す機会が多いため、自分の考えを頭の中で考えるだけでなく、積極的に他者に意見を求めることで、思考に偏りがないかや、客観視できているかを確認したいと思います。

クリティカルシンキング入門

データ分析で見える世界が広がる!

データ分析の最初の一歩は? これまでデータ分析を行う際、どこから手を付けてよいかわからず迷っている時間が長かったのですが、今後は「まずは分解して傾向を探ってみる」「何も見えなくても失敗ではない!」という姿勢でアグレッシブに取り組んでまいります。 情報共有で意識すべきこと 施策立案前の仮説構築、施策の効果検証、上司/同僚/取引先との情報共有や報告など、全体像を漏れなく把握し問題点を特定、改善策を検討し、データ検証し、関係者へ共有/報告するすべてのフェーズにおいて、今週の学習が生かせると感じました。MECE(モレなくダブりなく)は、マーケティングやPDCA改善に欠かせない思考であるため、常に留意して業務に取り組んでまいります。 可視化がデータ分析の鍵? データ分析においては、頭の中で考えるのではなく、まずは可視化できるもので状況を整理することが重要です。頭の中だけで整理したものでは抜け漏れが発生しやすいため、他者と共有する際のツールとしても活用できます。また、切り口に迷うよりもまずは分解をしてみて傾向を探ることが大切です。トライアンドエラーを通じて、分析方法の傾向を掴むことができます。 コミュニケーションで大切なことは? コミュニケーションにおいては、情報共有や報告の際に「モレなくダブりなく」伝えられているかを意識し、データ共有においても相手が理解しやすい加工を心掛けます。

「業務 × 検討」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right