データ・アナリティクス入門

問題解決の4ステップで見える未来

問題解決の切っ掛けは? 問題解決の4ステップを意識して取り組むことで、整理して分析できることが理解できました。普段、無意識に考えると、思考が散漫になり、思うような成果やアイデアが得られなくなることを実感しています。特に、「What(何が課題か)」をしっかり意識することで、その後の「Where(どこに問題があるか)」の分析が効果的になると感じ、今後もこの点を大切にしていきたいと思います。 次の対策はどうする? また、次の打ち手を検討する際には、あるべき姿(目標数)と現状(実績)を比較しながら、問題解決の4ステップを具体的に適用し、適切な対策を講じたいと考えています。これまでにも課題を見つけ対策を実施してきたものの、今後はさらに精緻な対策が立てられるよう努めたいと思います。 フレームワーク活用は? 次週からは、フレームワークの考え方を意識し、以下のステップを取り入れていきます。 ① 現状の数字を把握する ② MECEやロジックツリーを活用して整理する ③ What(何が課題か)を明確にする ④ Where(どこに問題があるか)を検討する ⑤ Why(なぜ起きているか)を分析する ⑥ How(どうするか)を具体化する

データ・アナリティクス入門

市場を読み解く!成功する仮説の立て方と活用法

3Cと4Pの学び方は? 3C(市場・顧客・競合・自社)と自社を細かく検討するためのフレームワークである4P(製品・価格・場所・プロモーション)の関係について学びました。これにより、市場分析がより具体的かつ体系的に行えるようになります。 仮説を複数立てる意義とは? また、仮説の立て方についても学びました。仮説は一つではなく、複数立てることでその有用性が証明されやすくなります。仮説には問題解決のための仮説と結論の仮説があり、それぞれの役割が明確です。 新卒市場での戦略は? 例えば、新卒市場での人材獲得では、採用実績校と定着性を数値化し、学校訪問や求人活動を行うことで、技術系就職担当教授やキャリアセンターの職員に対する認知と共感を得る可能性が向上します。これにより、相関関係が期待できる重点対象校へのアプローチが効果的になります。 中国・四国エリアでの具体的な活動 具体的には、中国・四国エリアの国立高専(香川、阿南、新居浜、高知、呉、宇部、米子、松江、津山)を対象に、卒業生名簿と直近3~5年間の実績データをもとに学校訪問を行います。特に、内々定者がいる学校には個別情報を対面で提示し、認知と共感を高めるよう働きかけることが重要です。

データ・アナリティクス入門

仮説から見える学びの真実

仮説に盲点はあった? 仮説を立てる際、ついつい決め打ちになっていたように感じます。また、仮説同士の網羅性が不十分であったため、上位層のレビューで指摘を受けたことに気づくことができました。特に、手間を惜しまないことの重要性が印象に残っています。 仮説の種類を見分けた? 「仮説」という表現はよく使っていただけたものの、「結論の仮説」と「問題解決の仮説」という種類があることに気づくことができ、良い気付きとなりました。 戦略で仮説活かせた? 今期の戦略策定にあたっては、結論の仮説と問題解決の仮説を活用し、目標に対するゴールを設定する方針です。また、現在課題となっているサービスの継続率向上のために、問題解決の仮説を用いてアプローチを検討しています。 データで仮説検証? そのため、昨年度の契約状況に関するデータを収集し、業種や支援内容など様々な角度から比較して仮説を立てる計画です。 戦略計画は整った? 戦略の策定は1ヵ月以内に完了させる必要があるため、まず事業部の戦略目標や方向性、自身の売上目標を確認します。その上で、契約に関するデータ(契約のきっかけ、契約内容、単価、期間、業種)を収集し、比較・分析を行う予定です。

データ・アナリティクス入門

論理と仮説で挑む解決の道

どうして仮説思考? データ分析においては、目的を明確にし、仮説思考で取り組むことが重要だと再認識しました。問題解決のステップを復習・整理する良い機会となり、筋の通った仮説を立てるためには、多面的な視点からロジックツリーを活用することが有効であると実感しました。一方で、可能性のある原因を網羅的に洗い出すという点ではまだ苦手意識があるため、今後も意識的に仮説思考の習慣を身につける必要があると感じました。 離脱上昇の背景は? 自社のSaaSプロダクトの中では、あるものについて利用者の離脱率が上昇している現状を踏まえ、本講座で学んだ問題解決のステップを振り返りながら検討を進めています。複数の解決策を洗い出すことができたら、それを今期の重点施策として実施し、PDCAサイクルを回す計画です。 論理思考がなぜ大切? これまでの取り組みでは、なんとなくデータを眺め、漠然とした仮説に基づいて解決策を考えてきました。しかし、本講座を通じて、論理的な思考と筋の通った仮説検証こそが、問題解決に直結する重要なプロセスであることを学びました。また、取り組みの中でミーティングを通じてチームメンバーとアウトプットや意見交換を行うことの大切さも実感しました。

クリティカルシンキング入門

スライド作成のコツを学び、効率UP!

データの相関性とは? メッセージと図、グラフなどのデータの相関性について考える際には、まず伝えたい内容と誰に伝えるかを明確にすることが重要です。これにより、作成にかける時間の効率も向上します。 スライド作成の工夫は? スライドの補足的な要素として、矢印、フォント、配置などを有効に活用することは大切です。特に、新入社員向けに年間予算作成方法をレクチャーする際には、図や一般的な用語を使い、文字数を増やさずに分かりやすい資料を作成することを心がけています。 初心者の視点を忘れない 自分が慣れてしまっている内容でも、毎年のレクチャー中に思わぬ質問が出ることがあります。これは、私にとっては当たり前でも、初めての人にはわかりにくい部分があるためです。そうしたフィードバックを忘れずに、資料を日々校正し直していきたいと思います。 スムーズなスライドチェック スライドが完成した後には、必ず読み手の視点で見直し、スムーズに読み取れるかを確認します。もし読み取りづらい場合は、矢印、配色、メッセージ、配置などを再検討します。また、社内外問わず良いプレゼン資料に触れる機会を活かし、コツを学んで自分のプレゼンのバリエーションを増やしていきたいです。

データ・アナリティクス入門

ロジックで拓く学びの扉

ロジックツリーって何? ロジックツリーとは、ある問題や課題に対して、その構成要素を分解し整理するためのワークフレームです。複雑な要素を明確にし、原因や解決策を見つけ出すためには、MECE(もれなくダブりなく)を意識することが重要です。 なぜ手順が必要? システム導入のプロジェクト進行で発生する問題に対して、ロジックツリーを活用する具体的な手順は以下の通りです。まず、タスクが遅延している原因という起点となる要素を設定します。次に、その要素を「スケジュールに対する意識不足」「リソース不足」「スケジュール自体に問題がある」などといった具体的な要因に分解します。 どう深掘りするの? さらに、各要素について深掘りし、たとえばリソースが不足している場合には、タスクに必要な要員を明確に割り出していなかったことが原因として考えられます。その上で、各原因に対して解決策を検討します。具体的には、必要な要員の割り出しを行い、タスクを完了するためにどの要員がどれだけ必要かを明確にし、要員の調整を試みるという方法です。 実行計画はどうなる? 最後に、検討した解決策に優先順位を付け、実行計画を立てることが、問題解決のために有効であると考えられます。

戦略思考入門

学びを生かす!戦略的成長への道筋

学習で気づいた課題は? 今週の学習を通じて、顧客視点にフォーカスしすぎて議論が不足していた自分に気づきました。フレームワークを活用し、広い視野で整理・検討することで、整合性の取れた方針を定めることの重要性を学びました。また、限られた資源をどこに優先的に配分するかを考えることも重要です。 3年後の売上目標に向けて 私の部署では、3年後に大きな売上目標が掲げられています。その達成に向けて今提供している商品やサービスをどう進化させるか考えていますが、現在市場のトップで走るも、今のままでは大きな売上拡大は難しいと感じています。そこで、今回学んだフレームワークを活用し、現状を分析したうえで戦略を練り、部署内での議論がより深まるよう努めたいと考えています。 新規事業に求められる戦略は? 私は新規事業領域に取り組んでおり、いかに打席に立つ機会を増やすかに重点を置いています。求められているのは確度の高い戦略を多く創出することです。そのために、PESTで環境を整理し、3Cで顧客や市場の動向を分析、SWOTで自社の強みを明確にし、戦略を多数出します。そして、分析結果と整合性のある方法を優先順位をつけて選び出す方法で進めていきたいと考えています。

データ・アナリティクス入門

ロジックツリーとMECEで整理する学びの極意

問題の実数把握の重要性を再認識 問題や現状を実数で把握することの重要性を再認識しました。現状の問題を理解した後、アイディアを整理する手法としてロジックツリーとMECEを学びました。以前からロジックツリーの存在は知っていましたが、2つの種類があることは新たな発見でした。また、MECEについては、社内での係数の分類方法を見ると、元々MECEを意識して分析目的で分類が形成されていると感じ、既存の分類の意義を再確認できました。 数字化の意識をどう高める? 現状や問題を日常的に数字にしていますが、今後はさらに意識的に行おうと思います。MECEについては、大項目で終わらせることがあるので、階層を意識する必要があると考えています。この分野において、AIも進化してきているので、検討するべき項目の洗い出しにおいて、効率的かつ網羅的であることを意識したいと思います。 ロジックツリーとAIの活用 問題の数字化や目標達成までの数字化、対策に対する数値的感覚の共有が重要です。ロジックツリーの階層を意識し、さらなる分類方法の可能性を追求し(「このポイントを分類する方法はあるか?」という問いを持つ)、AIを活用して網羅性の向上を効率化させたいと思います。

データ・アナリティクス入門

問題解明の鍵は日常にあり

現状と理想の差は? 問題を明確にするため、ロジックツリーの活用法を学びました。あるべき姿やありたい姿と現状とのギャップに着目し、そのギャップがなぜ生まれているのかを問うことで、原因の特定につなげられると感じました。原因分析の手段としてMICEを意識し、問題を分解する取り組みが、より具体的な問題の明確化につながると思います。 MICEの見方は? 一方、MICEの視点で考えることはすぐには難しいと感じたため、日頃からの訓練が重要だと再認識しました。例えば、夕飯のメニュー選びにおいて、中華、和食、洋食といった大分類の中で、麺類や主食といった細かなカテゴリーに分けて考えるといった方法を試してみようと思います。 予算獲得の鍵は? また、予算獲得に向けては、各業務におけるあるべき姿を明文化し、メンバーと共有することが不可欠です。現状とのギャップやその原因についてMICEを用いて検討することで、新たな発見や打ち手が見えてくると感じます。さらに、あるべき姿を明確にするために、会議を通して現状のユーザーの声や法的根拠を把握し、理想と現実の差をしっかりと捉えることで、あいまいな課題の解消につながり、全体のストレス軽減にも寄与すると思います。

データ・アナリティクス入門

データから見る解決のヒント

問題解決ってどうする? 問題解決の手順を踏む中で、まずは「what(問題の明確化)」「where(問題箇所の特定)」「why(原因の分析)」「how(解決策の立案)」のステップを順に進めることが重要だと再認識しました。原因の仮説を立てるためにはデータ収集が不可欠で、仮説は単に立てるだけでなく、フレームワークを活用して幅広い視点から検討することで有用性が広がると感じました。その際、決め打ちせずにまずは自由に思考を発散させることも大切です。 数字から見える真実は? また、現時点では具体的な数字は得られていないものの、例えば事務処理に関しては実際の受付件数、処理件数、処理できなかった件数、人員数などのデータをまず取得し、そこから何が見えてくるかを仮説として立ててみたいと考えています。ただ「件数が増えているから忙しい、人手不足が原因だ」という決め付けに陥らず、複数の視点で状況を検討する必要性を感じています。 具体的な例には触れませんが、まずは上記のデータを確実に収集することが先決です。その上で、今回の問題解決のステップに沿って、場合によってはフレームワークの活用も検討しつつ、少なくとも複数の仮説を提示できるようにしたいと思います。

データ・アナリティクス入門

多面的視点で掴む成長のカギ

原因を探るヒントは? 原因を探る際には、与えられたデータのみならず、プロセス全体に目を向けることで、より深い示唆を得ることができます。このアプローチは、問題に関わる要素とそうでない要素を分ける「対概念」という考え方にも通じています。 A/Bテストの重要性は? たとえば、WEB画面のUIUX検討時には、これまで担当者が一案に絞ってリリースしていたため、思い描いた効果が得られなかったという事例があります。今後は、複数の施策を同一条件下で比較するA/Bテストを活用し、データに基づいて顧客に響く施策を選定する手法に切り替えていきます。 営業プロセス見直しは? また、営業活動による収益最適化のデータ分析では、営業プロセスが曖昧に分類されていたため、正確な要素抽出が困難でした。そこでフロントメンバーへの丁寧なヒアリングを実施し、プロセスを適切に分割することで、各要素を明確に特定し、分析精度を向上させています。 テスト実施の秘訣は? さらに、A/Bテストの実施にあたっては、期間設定や施策パターン数の考慮が重要なポイントとなっています。これらの条件をどのように整えるかが、テストの効果を左右する鍵となるでしょう。

クリティカルシンキング入門

伝わる!シンプル資料の作り方

伝えたいことって何? キーメッセージを明確にし、伝えたい内容に沿って情報の順序やグラフの種類を選ぶことが重要であると学びました。相手に意図を的確に伝えるためには、単に言葉を練り直すだけでなく、どの情報をどのように表示すれば理解しやすいかを考える必要があると感じています。 新規販促ってどうかな? 今後は、新規顧客拡大に向けた販促手法の整理に取り組みます。上長のみならず、関連部門の担当者と共有する資料作成や、WEBページ改修、さらにはデザインやコーディングを依頼する際にも、明確な方向性を示す手段として活用していくつもりです。 視覚資料の威力は? また、メッセージを迅速かつ正確に伝えるために、図やアイコン、写真、表やグラフなど、視覚的に情報が把握しやすい資料を作成することが求められます。伝えたい内容を最もシンプルに表現するためには、どのデータが必要か、そしてそのデータをどのように表現すればよいかを、販促手法ごとに検討してリスト化することが大切です。 データ整理の真意は? さらに、必要なデータを収集する際には、それぞれのデータがなぜ必要であるのかを明確にしながら、情報の収集と整理を進めることが不可欠だと実感しています。

「活用 × 検討」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right