戦略思考入門

経済のヒントが未来を変える

大量生産のメリットは? 規模の経済では、大量生産によって固定費が低減し、結果として全体のコストが下がるという原理について学びました。一方、範囲の経済は、既存事業の資源を他事業展開に活用することでコストを抑えられる点が特徴です。 タクシー事例は何を示す? 授業内のケーススタディでは、特定のタクシー事業の事例を通して、多角化に向けて既存の強みを範囲の経済として効果的に利用している点が示され、非常に考えさせられる内容でした。また、正のフィードバックによる効用と普及率の上昇が、ある臨界点を超えると急激に効果が大きくなり、顧客の囲い込みが実現される手法として理解できました。 次期計画の戦略は? この知見をもとに、来期の事業計画作成において、規模と範囲の両面から戦略を検討していきたいと考えています。特に、規模の経済に関しては、多量購入や先物取引などの手法が効果的であることを理解しているため、両者の視点をバランスよく組み入れた戦略立案に努める所存です。 活用事例の課題は? 皆さんは、規模や範囲の経済をどのように活用されているでしょうか。また、過去に取り組んだ事例があれば、その際に直面した課題や難しさ、そして成功のための重要な要素についても、可能な範囲でぜひ教えていただきたいです。

データ・アナリティクス入門

合宿で描く未来のマーケ戦略

方向性はどう決める? 来年度に向けた部としての1年間の方向性とTODOを検討する合宿で、今回学んだ内容を活かすことができると感じました。合宿では、現状できていることとできていないこと、そして今後必要なソリューションについて話し合いました。具体的には、今後重要になると予想される広告指標について、各ソリューションごとの導入実績を比較し、2024年の傾向を把握することが求められると認識しました。また、現状のホットなマーケティングトピックから、今後伸びるであろうKPIを仮定し、その上でどのようなソリューションを開発すべきかを検討しました。 情報はどう集める? さらに、分析においては、情報やデータの収集方法が非常に重要であると感じました。普段あまり活用していなかった社内のポータルや事例集なども積極的に利用し、必要な情報が何か、足りない情報はないかを意識しながら、学んだプロセスに沿って分析に取り組んでいくつもりです。 分析の進め方は? また、データ分析の基本として、目的を明確にし、仮説思考でアプローチすること、比較を重視すること、そしてwhat→where→why→howというプロセスで考えることの重要性を再確認しました。これらの考え方を実践することで、より具体的な分析結果が得られると実感しています。

データ・アナリティクス入門

数字を超える、比較の妙技

比較と目的はどう考える? 分析において、「比較」と「目的への立ち返り」の大切さを改めて感じました。何かしらの数値をグラフ化して報告するだけでは、かえって分析した気分になってしまい、実際は単なる数字の結果報告に過ぎなかったと認識しています。今後は、目の前の数字だけではなく、適切な比較対象を設定し、分析結果としてしっかり報告できるよう努めたいと考えています。 上司の反応はなぜ? 直近の業務では、状況報告を上司に行った際、好意的な反応を得られず、簡単に取得できる情報だけに依存し、見栄えの良いグラフや表を作成するだけの報告になっていたことを痛感しました。単に数値を並べるだけでなく、それぞれの情報をきちんと比較し、その内容から次の対応や施策を検討できるような報告に改善する必要性を感じています。 次の一手はどうする? そのため、今後の取り組みとして以下の点を意識していきます。 まず、分析の目的を再度明確にすること。 次に、比較する項目や内容について、上司の意見や生成AIのサポートを活用しながら見直しを行うこと。 さらに、定量的な分析だけでなく、定性的な分析も取り入れられるよう検討を進めること。 そして、最終的には目的に沿った次の対応策が検討できるような報告をまとめることを目標とします。

クリティカルシンキング入門

データ分析の神髄を学ぶ: MECE活用法

情報をどう加工する? 情報を分解して考える際のポイントについて学びました。まず、情報を加工して新たなデータが得られないかを検討します。そして、情報の分解には複数の仮説を立て、一度分けた情報だけで判断せず、別の視点から再度分析を試みます。数字を見るだけではなく、グラフ化することで認識しづらかった数字の特徴が浮き彫りになることがあります。 分析時のMECEの重要性とは? 情報を分解するときには、まず全体を定義づけし、MECE(Mutually Exclusive, Collectively Exhaustive)を意識した切り口を見つけます。これにより、重複や漏れがない分析が可能になります。アナリティクス分析時にも、見たままのデータに頼らず、別の視点を意識して分析することが重要です。 過去データの活用法を知ろう コンテンツ制作の企画段階では、MECEを意識し、どの顧客に対してアプローチすべきかを判断します。次の施策を始める前には過去のデータを集計し、数値をさまざまな方向から分解して、過去の傾向を徹底分析します。チームに情報を共有する際には、グラフを用いて視覚的に分かりやすく説明する工夫が求められます。このように、決めつけを避け、別の分解方法が無いかを考えながら分析を進めることが肝要です。

クリティカルシンキング入門

問いを深める成長の軌跡

適切な問いはできてる? 今週の演習を通して、適切な問いを立て、課題を正しくとらえることの大切さを再認識しました。論点(イシュー)が明確でなければ、目指すべき解決策や対応策にたどり着くことができないという実感を得ました。 優先課題は何だろう? また、GAILを学ぶ中で、業績の不調に対し原因や解決策が複数の切り口から考えられることを理解しました。優先的に取り組むべき課題を特定することが、最も成果につながるという点も大きな学びでした。 新部署で挑戦はどうなる? さらに、この4月から新たな部署で企画業務を担当する中で、未経験の領域に挑戦していると実感しています。課題設定が得意なメンバーが多い現状において、どのように本質を捉え、どのフレームワークを活用して解決策を導いているのか、今回学んだ内容を自分なりに応用しながら考え方を深めたいと思います。 イシューは見えている? 今後は、各課題に対してその課題が適切か、イシューが明確になっているかをしっかりと確認する習慣をつけるとともに、検討の過程でもイシューがずれていないかをこまめにチェックします。また、課題設定や解決策の提案が得意なメンバーの説明を受け、講義内で学んだフレームワークを活かしながら実例としての学びに変えていきたいと考えています。

データ・アナリティクス入門

仮説思考で業務が変わる瞬間

仮説の幅は広い? 仮説を考える際は、正しい答えを一つだけ見つけることが目的ではなく、論点に対する仮の答えとしてフレームワークを活用し、幅広い可能性を検討することが大切だと感じました。決め打ちに陥らず、常に複数の仮説を立てる姿勢が重要です。 仮説の意義は? また、仮説を考えることには、検証マインドの向上による説得力の増強、問題意識の向上、対応スピードのアップ、そして行動の精度向上という4つの意義があると学びました。これらの点は、データ分析にとどまらず、日常の業務においても活かせる有用な考え方だと思います。 難しさはどう? 仮説思考というと難しそうに感じるかもしれませんが、普段の業務で些細な疑問を感じたときに自分なりの原因を考え始めているのであれば、実はすでに仮説思考を実践しているのだと実感しました。今回学んだ問題解決のプロセスを参考に、日々の業務に仮説思考を取り入れることができそうです。 小さな課題は? まずは、短時間で取り組める小さな課題に対して、意識的にフレームワークを活用し仮説の幅を広げることから始めたいと思います。その上で、分析時の適切なグラフ選定や結果の分かりやすいビジュアル化といった、今まで苦手としていた分野の改善にも取り組んでいこうと考えています。

クリティカルシンキング入門

イシューを極める学びの旅

どのイシューに注目? 今回の学びで、フォーカスすべきイシューを正しく把握する重要性を再認識することができました。どのイシューに注力すべきか、そしてそのために何から取り組むべきかを明確にしなければ、成果に大きな差が生まれるという点は、今後の活動において大変参考になります。特に、ある有名ファーストフードチェーンの事例は、イシューの捉え方を考える上で非常に示唆に富んでいました。 エリアプランはどう整理? また、四半期、半期、年間のエリアプラン作成においても、この考え方は大いに役立つと感じています。エリアの現状や課題を正しく把握し、優先順位をつけること、さらには複数の解決策のオプションを検討することが重要です。顧客の反応を継続的に分析して、アクションプランを再構築し、必要に応じて追加検討を行う際にも、この学びは非常に活用できると考えています。 市場を多角的に見る? さらに、様々な角度から市場を分析することで、ターゲットとするイシューをより正確に把握する努力を続けたいと思います。仮説を立て、その検証結果をもとに改善を重ねるプロセスを通して、本当に必要な知識を身につけることが目標です。また、チーム内で得た知見を共有し、議論することで、さらに理解を深めることができると確信しています。

データ・アナリティクス入門

複数仮説で戦略を変える瞬間

仮説立てのヒントは? 課題に対して仮説を立てる際は、単に漠然とアイデアを出すのではなく、4Pや3Cといったフレームワークを活用することで、課題を整理して考える助けになると実感しています。また、具体的な問題解決に向けては、何が問題なのかという複数の仮説を立て、「どこに、なぜ、どうすべきか」という各段階を順に確認することで、より深く掘り下げた対策を見出しやすくなると考えています。 戦略の裏側は? 自身の業務を振り返ると、これまでは業務課題に対して仮説を立て、深堀りして解決策を導くというプロセスが不足していたと感じています。課題を分解して深く検討するステップを踏まず、思いついた打ち手に頼ることが多かったと思います。今回の学びを通じて、今後は課題に対して複数の仮説を立て、どの対策を実行するのが最適かを十分に検討する習慣を身につけ、より深い洞察に基づいた戦略立案を目指したいと考えています。 次は何を選ぶ? さらに、解決すべき課題に対して複数の仮説を立て、それぞれの対策を検討し、最終的に比較検討して選択する業務の流れが重要だと認識しました。今後、事業戦略の立案を進める中では、仮説立てや深掘り、そして対策の選択というステップを必ず踏むことで、より質の高い戦略を策定していきたいと思います。

クリティカルシンキング入門

図で読み解くデータの真実

視覚化のコツは何? 今回の講座を通じて、視覚的に分かりやすい図表の作成や、元データを複数の視点で分解してグラフ化する手法を学びました。情報を可視化することで、データの本質に迫ることができ、分析の精度が高まる点が非常に印象的でした。 分解視点はどう活かす? また、データの分解方法として、When(時間)、WHO(人)、HOW(手段)の視点を活用し、仮説を立てながらデータを読み解くアプローチは、理論と実践をうまく結びつけると感じました。こうした手法により、伝えたい内容を論理的に整理し、より明確に説明できるようになると思います。 情報分解の秘訣は? さらに、MECEの考え方を用いて情報を漏れなく、ダブりなく分解する技術についても学びました。層別分解、変数分解、プロセス分解といった具体的な切り口を通して、第三者にも分析の背景や意図を的確に伝える方法を身につけることができました。 課題抽出はどう確認? 最後に、アンケート結果や経費使用の分析を通じて、課題の抽出と適正な施策検討につなげる事例は、実務における分析の重要性を改めて認識させられる内容でした。自分自身でデータを作成する際や、他者のデータを検討する際に、適切な分解と背景の説明が説得力を高めるポイントであると感じました。

データ・アナリティクス入門

現状ギャップに挑む実践の秘訣

実践が難しいのはなぜ? 問題解決の手法として、あるべき姿と現状とのギャップを把握する大切さは理解していましたが、実際の業務で試みるとなかなか実践に移せないと感じました。また、ロジックツリーを活用する際、感度の良い切り口を見つけることの重要性を認識しつつも、その実現には難しさを感じています。 MECEに頼ってみる? 一方で、「MECEはほどほどに」という考え方が気持ちを楽にしてくれた部分もあり、今後は積極的に取り入れていきたいと思っています。同時に、ロジックツリー以外の方法についても学びを深めたいと感じました。 目的明確は必須? 先週までの学びでは、分析のためにはまず目的を明確にすることが不可欠であると再認識しました。その目的の明確化と、あるべき姿と現状とのギャップを検討することは、非常に密接に繋がっていると実感しています。今後の業務においては、販売実績の単なる加工に留まらず、「売り上げを伸ばすため、現状と目標値の大きな乖離が生じる要因を、MECEを意識して分析する」というアプローチを試みたいと考えています。 どの枠組みが有効? さらに、MECEを意識した分析を進めるにあたり、どのようなフレームワークが有用なのか、意見交換を通じて深めていければと思います。

デザイン思考入門

少人数で育むアイデアの種

ブレインで発想はどう? 私は、ブレインストーミングを主にアイデア出しの手法として活用しています。たとえば、顧客課題の把握や、販売戦略の検討など、さまざまなテーマに対して意見を出しています。リモートでのミーティングが中心なため、付箋よりもエクセルやテキストを用いて情報をまとめることが多いです。また、SCAMPERについてはこれまで意識して取り組んでこなかったものの、今後は意見を出す一手法として実践してみたいと考えています。 少人数で意見はどう出る? ブレインストーミングでは「否定しない」や「何でも言っていい」という基本ルールをみんなが理解して取り組んでいるものの、参加人数が多いと、どうしてもある一定レベル以上の意見でなければ雰囲気が微妙になってしまうことがあります。さまざまな意見を出し合うことは大切ですが、私は3~4人といった少人数で行うほうが、気軽に意見が言えてまとめやすいと感じています。 アイデア整理の秘訣は? まずは、アイデアをたくさん出すことが重要です。その際、ひとつのアイデアに変更を加えたり、具体的なペルソナやシチュエーションを想定して出してみると効果的です。そして、出されたアイデアを最終的に整理し、言語化して説明できる状態にまとめることが大切だと考えています。

データ・アナリティクス入門

目的を定め柔軟に切り拓く

なぜ仮説が必要なの? 分析においては、単にデータを整理して新しい気づきを提供するだけではなく、自分自身で仮説を立て、その仮説に基づいてどのような分析を行いたいか、また必要なデータは何かを考えることが重要だと学びました。以前は無意識に必要なデータを集めていたこともありましたが、目的を明確にすると分析のアプローチが大きく変わると感じます。同時に、立てた仮説に囚われることなく、他の可能性も公平に検討するスキルを身に付ける必要があると認識しました。 市場と売上の本質は? また、毎日の売上実績の確認は、単純に前年との比較やKPIの向上を狙うだけでなく、競合他社のマーケット動向や顧客へのアプローチについても視野を広げることが求められます。一社だけではなく、3Cの観点から広く分析することで、データが十分でなくても次の一手を打つための新たな視点が得られると考えています。 データ活用の秘訣は? 日々の実績やKPIのチェックに加えて、整理したデータをどう活用するか、チャレンジ精神を促す分析やその見せ方を意識することが必要です。競合の市場シェアデータなどを随時入手し、自分の活動が先月や過去と比べてどのように変化しているのかを具体的に確認できると、より実践的な行動変化にもつながると期待しています。
AIコーチング導線バナー

「活用 × 検討」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right