クリティカルシンキング入門

イシュー設定の重要性と技術活用法の探求

イシュー設定の重要性とは? イシューを設定することの重要さと難しさを実感しました。どのようなシチュエーションでイシューを設定するかによって、答えが大きく変わることを学びました。例えば、売上を上げるためのイシューにおいて、顧客の信頼を失っている時には価格を上げる決断は難しいですが、信頼を得ている時には価格を上げる選択も正しいと考えられます。状況をしっかりと分析し、適切にイシューを設定することが重要だと感じました。 技術の価値はどう測定する? 私たちの企業において技術の探索を行う際、技術の価値をピラミッドストラクチャーで分解し、その活用法を探ります。さらに、業界動向などの情報を収集し、以前は不採用としたイシューが現在適切であるかを再検討し、業務タスクに反映させます。また、上長に相談し、論理的な考えができているかフィードバックをもらうよう心がけています。 業務の方向性はどう深める? 日々の業務をピラミッドストラクチャーで分解し、その変化に応じてイシューを見直すことから始めています。上長とこのピラミッドストラクチャーを共有し、議論を通じて業務の方向性を組織全体で深めるよう取り組んでいます。

データ・アナリティクス入門

数字から広がる仮説の世界

数字加工はどう進む? 3週目では、仮説を立てるために数字をどのように加工するかを学びました。数字から意味を見出すには、まずデータを加工し、次にグラフなどでビジュアル化するという手順が重要です。具体的には、データの代表値を用いた加工や、ばらつきを感じた際には標準偏差を活用するなど、データの特性に応じた方法を選択します。これにより、グラフ化された情報から傾向をより把握しやすくなります。 手法の応用は? また、データ加工の手法が多様であることを理解した上で、毎月集計している売上や顧客層の分析にどの方法が適用できるのかを検討する意欲が湧きました。顧客層に特にばらつきが見られなくても、着目する観点によっては標準偏差を使った加工が有用である可能性があります。そのため、まずは代表値を用いてデータを整理し、グラフにしてみることが考えられます。 売上分析の疑問は? さらに、毎週抽出している売上データに目を向け、加工を通じて仮説を立てる試みも進めたいと思います。売上が高い日と低い日があるという傾向に注目し、どの代表値を活用するのが最適かを検討しながら、より具体的な仮説を構築したいと考えています。

データ・アナリティクス入門

仮説と試行錯誤で切り拓く未来

仮説構築はどう始める? 仮説を立てる際には、3Cや4Pといった切り口を活用し、情報を整理することで仮説ストーリーを構築しやすくなります。仮説は結論仮説と問題解決のための仮説に分かれ、検証にはデータ収集が不可欠です。その際、誰にどのように聞くかを工夫することで、仮説に沿ったデータが得られると感じました。 計画検討は何を確認? お客様の活用コミュニケーションの計画を検討する場合、これまでの施策結果の課題、どの部分で課題が生じているのか、その原因、そして施策変更による改善策について、段階的に細分化して考える必要があると認識しました。仮説の流れは「What → Where → Why → How」という順序で検討することで、論理的に整理されやすいと感じています。 検証実施はどう進む? 一方で、自分の組み立てた仮説が正しいかどうかについて、常に不安を感じることがあります。授業では、仮説に疑問があってもまずは早く検証を回すことが大切であると指導いただきました。しかし、実際にその検証を迅速に進めるためには、どのようなアプローチが最適なのか、今後も試行錯誤しながら検討していきたいと思います。

データ・アナリティクス入門

データが語る合格ストーリー

分析の目的は何か? 分析とは、異なる対象を比較する作業です。データには量的なものと質的なものがあり、分析の目的に合わせた適切なデータ収集が求められます。何を明らかにしたいのかを事前に定めた上で、さまざまな方法を用いて分析を進めることが重要です。なお、データ分析は社会の多くの分野で幅広く活用されています。 国家試験の変数を探る? 学生の国家試験合格の可能性を推定する際には、各変数についてもれなく、かつ重複なく抽出する必要があります。例えば、地域診断の項目に基づいて情報収集を行い、理論モデルに従うと同時に、優先順位を踏まえた効率的なアセスメントが可能になると考えられます。 重みづけはどう考える? 具体的には、国家試験に合格した学生と不合格の学生を比較する際に、MICEによる変数の再検討が挙げられます。高校卒業時の成績、入学試験の方式や結果、入学から4年生までの全履修科目の評価、粗点、出席状況、提出物の遅滞や未提出、模擬試験の結果の推移、さらには国家試験対策講座の出席状況など、さまざまな要素を盛り込むことが考えられます。しかし、各要素の重みづけについては現状、疑問点が残る状況です。

データ・アナリティクス入門

仮説で切り拓く受講生の挑戦記

分析って何を探す? 分析とは、物事を比較しながら目的意識を明確にし、仮説を立てつつ進めるプロセスです。分析を効果的に進めるためには、「What(何を)」「Where(どこで)」「Why(なぜ)」「How(どのように)」という手順に沿うと良い成果が得られる可能性があります。 フレームをどう活かす? 特に「Why」の段階では、ケースに応じて既存のフレームワークを活用することで、より深い洞察が得られるでしょう。また、分析結果をグラフなどで見える化することにより、その説得力は一層増します。 障害の本質は何? 障害分析においては、過去の事例を参考にしながら、現時点では見えていない問題点を抽出することが重要です。これまでは既存の数字を並べるだけで手探りだった部分も、今後は「何を明らかにするか」という目的意識を持って進めたいと考えています。 データ活用はどう? まずは、障害発生件数の減少を目指すために、どのようなデータが必要かを検討し、過去の事例から現在の課題を洗い出すことから始めます。その上で、得られた情報をもとに自分なりの仮説を立て、分析作業を着実に進めていきたいと思います。

データ・アナリティクス入門

思考の質を高めるMECEとMICE活用法

MECEの考え方とは? MECEの考え方は、切り口を重複させずに漏れなく設定することが重要です。どのような切り口が最適かを判断するためには、高い感度が求められます。これに関しては、分析の経験を積むことや、多方面からの意見を聞くことも必要と感じています。 ロジックツリーの活用法 ロジックツリーについては、論理的思考を活用することで、適切な判断ができるようになります。 MICEの活用には何が必要? MICEの考え方は、実務に役立ちそうで、特に顧客分析など日常的な業務での活用チャンスが多いです。「重複なく漏れなく」を実現することはその通りと感じつつも、切り口の設定によって重複を避けることが難しい場合もあり、その点をどのように克服するかが課題だと考えています。 BI分析へのMICEの導入 業務で作成しているBI分析において、MICEの軸を取り入れることにしました。切り口については様々な角度から実施し、どの分析が効果的であるかを検討します。また、ロジックツリーについては、既にパイプライン分析で似たことを行っていますが、改めてロジックツリーを用いた分析も進めてみようと思います。

アカウンティング入門

会計実務に迫る学びの瞬間

大手企業の会計はどう? ある取引実績のある大手企業の事例から、他社の会計状況に具体的に興味を持って向き合うことができました。アトラクション作成に必要なコストの減価償却やロイヤリティの考え方、また授業内で触れられたスポンサーが費用を負担して宣伝につなげる手法など、これまで疑問に感じていた点を具体的でわかりやすい形で学ぶことができました。 基礎理解で自信は? 会計の基礎を理解し、考え方をより深められたことで、経営層との折衝にも自信と重みを持って臨めるようになったと実感しています。自社の事例を客観的に振り返り、現状のビジネスの強みや改善点を適切に把握し、意見として示すことができればと考えています。 P/L分析で成長は? さらに、自部門のP/Lを詳しく読み込み、同業他社と比較することで、改善点やさらなる成長ポイントを探ってみたいと思います。特に原価率については、これまであまり疑問を持たずに指標として活用してきましたが、現状を踏まえた上で適正なビジネスモデルの再構築を検討し、点と点でしか捉えられていなかった部分を、全体的な線としてシミュレーションする試みをしてみたいと考えています。

戦略思考入門

福祉現場で感じる経済の本質

規模の効果は理解できる? 規模の経済性について、私の職場は福祉系でサービスの販売を行っていないため、固定費は主に人件費や電気・水道料金に充てられ、変動費は支援に使用するわずかな材料費に相当します。生産量の増加による1個当たりのコスト低減は、通常の製造業とは異なる面があります。 習熟効果は実感できる? 習熟効果に関しては、各職員の累積経験やスキルの蓄積が大きな役割を果たしています。業務を重ね、得た知見を共有することで、効率が向上し、より質の高い支援が実現され、結果として利用者の拡大にも繋がっています。 範囲拡大は有効か? 範囲の経済性においては、当職場には多くの資格保有者がいるため、現行の支援業務に留まらず、個別領域の拡大や新たなプログラムの導入も検討の対象となっています。既存の資源をさまざまな形で活用することで、効率的な運営が期待できます。 ネットワーク整備は可能? 一方、ネットワークの経済性については、現状、業務を推進する上で必要なスキルを持つ人材が不足しているため、優先順位の見直しや既存スキルの活用、さらには採用活動の強化が求められています。

データ・アナリティクス入門

データ分析で広がる新たな視点と可能性

データの深意を探るには? 各データを深く掘り下げ、その背後に何が見えるかを考えることが重要だと感じました。数値からクリック率やコンバージョン率を計算することで、新たな視点から現状を考察できると思います。また、問題に関連する要素とそうでない要素を分けて考える対概念や、適切な判断基準を設けて各案を評価する過程の重要性を学びました。常に思考の幅を広げることを意識することが大切だと感じます。さらに、A/Bテストを行うことで結果を比較でき、適切に検討を進められることも分かりました。 学んだ知識はどう活かす? 自分の業務にすぐに活用できるかはまだわかりませんが、今週学んだデータの応用や対概念の考え方は役立ちそうです。3W1Hのステップを繰り返しながら、丁寧に分析していくことが大切だと改めて感じました。 採用手法は最適か? 実行可能な業務として、採用活動にもこの手法を取り入れられるのではないでしょうか。採用ページのクリック数と応募者数のデータを取得し、ファネル分析や離脱ポイントを特定した上で、A/Bテストを実施すれば、最適なコンテンツや応募フォームを判断できると思います。

データ・アナリティクス入門

プロセス分解で見つける問題解決のヒント

原因を見極めるには? ビジネスにおいて、問題の「正しい」原因を特定することはほぼ不可能と言えます。様々な要因が複雑に絡み合っているため、正解を見つけるのは難しいものの、「こんな方向性で問題に取り組めばよいかもしれない」という目途は立つこともあります。問題の原因を明らかにする方法としては、プロセスに分解するアプローチが有効です。 クリック率不足の理由は? 特にWEB手続きを推進する業務では、プロセスで分けてクリック率やコンバージョン率を見ていく考え方がすぐに役立ちそうです。クリック率が低い箇所には、どのように誘導を行うかを検討する必要があります。また、手続き完了率が低い箇所については、説明の文言がわかりにくいのか、コールセンターに電話したいと思われる要因があるのかなど、問題の原因を深掘りする必要があります。 ABテストで改善は? これらのプロセスで分解して得られた情報を基に、クリック率やコンバージョン率が低い部分にはABテストを行い、より良い施策を立てます。さらに、その結果を活用して、データに基づく意思決定を行ったり、他者を説得する材料とすることが重要です。

クリティカルシンキング入門

問いで見えるチームの未来

問いをどう設定する? まず、答えを急がず、まずは問いを立てることが大切だと理解しました。自分自身だけでなく相手も偏った考えに陥りがちなため、問いを継続する際には、MECEやロジックツリーなどの手法を活用して、自分の視点が客観的かどうかチェックしています。 部署兼務の意義は? 3月から新しく立ち上げた部署との兼務となったため、まずは重要な課題(イシュー)を特定し、新しい部署が軌道に乗るよう努めたいと考えています。また、現在の部署にも課題が残っているため、チームメンバーと共にイシューの特定を進めていく予定です。みんなで話し合うことで問いを共有し、同じ目的に向かって前進できると信じています。 ビジョンどう見極め? あるべき姿を考え、まずはそのビジョンがぶれていないか、他者の意見を聞くことが重要です。現状を正確に把握し、理想とのギャップを明確に言語化することで、解決策を導き出します。解決策に早急に飛び付くのではなく、様々な切り口で問題を分解し、漏れなく重複なく検討することが求められます。最終的には、複数の仮説を立てることで、反対の視点や「NO」の仮説からも検証を進めています。

クリティカルシンキング入門

数字が描く学びの軌跡

どうして可視化する? グラフなどを用いた「可視化」を意識することで、一次データをより細かく分け、隠れた傾向を発見することが可能になります。数字を味方につけることが、データの真実を浮き彫りにする第一歩です。 データ切り口の意味は? また、データを意味のある切り口で分けることの重要性も指摘されています。複数の視点からデータを検討し、活用することで、分け方一つで導かれる結論が変わる可能性を理解する必要があります。 見た目だけで判断? さらに、データの分解に際しては、結論を急がず、ぱっと見の傾向が必ずしも全体を示しているわけではないということに注意が必要です。ロジカルシンキングの基本として、MECE(漏れなくダブりなく)を意識し、無駄のない切り口で丁寧に分析することが求められます。 分解のコツは何? 具体例として、商品ごとの顧客層を分析する際には、年齢、性別、職業、購入時の時間帯や曜日など、さまざまな観点から分解を試みることが有効です。ただし、複数の切り口を用いる際も、ひと目での判断によって誤った解釈をしてしまわないよう、十分に検証する姿勢が大切です。

「活用 × 検討」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right