データ・アナリティクス入門

仮説で拓く学びの道

分析の基本は何? 本資料は、分析を比較の視点から行い、仮説思考を持って問題に取り組むための考え方と手法を示しています。分析の要点として、プロセス、視点、アプローチの三つの軸が必要とされ、各軸が互いに補完しながら、より深い理解を促すことを意図しています。 プロセスをどう考える? プロセスでは、まず目的や問いを明確にし、その問いに対する仮説を立てます。次いで、データを収集し、分析によって仮説を検証するという流れが求められます。 視点と工夫は? 視点については、インパクト、ギャップ、トレンド、ばらつき、パターンといった観点からデータを捉え、それぞれの側面から情報を整理していきます。一方、アプローチでは、グラフ、数字、数式などを用いて、情報を視覚的かつ計量的に表現することで、理解しやすくする工夫が大切です。 可視化はどう? 比較のための可視化手法としては、データの特徴を一つの数字に集約する方法、グラフ化して目で捉える方法、そして数式に集約するアプローチがあります。これにより、データの持つ意味がより明確になります。 代表値は何? また、データを見やすくするためには、代表値と分布の確認が有効とされています。代表値としては、単純平均、加重平均、幾何平均、中央値などがあり、一方、ばらつきを見るためには標準偏差が活用されます。特に、95%のデータが含まれるという2SDルールは、分布の確認において重要な指標となります。 契約単価の意味は? 具体例として、【1】の契約単価の場面では、相加平均を用いた結果、受注率などの違いが十分に反映されず、平均値が大きく見えてしまうという事実が挙げられます。そのため、加重平均を用いることで、感覚に近い平均単価が算出できる可能性が示唆されます。 成長率はどう考える? また、【2】の成長率の場面では、合計の成長率を足して年数で割る方法が用いられていましたが、こちらは幾何平均を利用するアプローチが適切です。具体的には、(1+x)^2=◯年後の売上/スタート年の売上という考え方に基づく計算が求められます。 計算見直しは? これらの考え方を踏まえ、Q2では【1】と【2】の実際の計算を見直し、過去に作成したデータを再評価する行動を取る必要があります。また、平均値の計算方法一覧を見える場所に保存し、必要な際にすぐに確認できるようにすることで、定着した学習行動が実現されることが期待されます。

データ・アナリティクス入門

比較が拓くデータの新常識

データ比較はどう進める? 分析の基本原則は「比較」であり、まずはデータを比較する目的に立ち返ることが大切だと感じました。データ収集の前に仮説を設定し、その仮説を検証していくプロセスの中で、データをどのように加工して示すかという点が今回の学びのポイントでした。加工の視点としては、大きく代表値と散らばりの2つに分けられ、代表値には単純平均、加重平均、幾何平均、中央値があること、そして散らばりについては標準偏差で表現されることを学びました。 外れ値の対応はどうする? 今までは単純平均しか扱ったことがなく、重みを考慮した平均やべき乗を利用した手法は初めて触れる内容でした。また、平均値だけでは捉えきれない外れ値に対しては中央値を用いることで対応する方法がある点も新鮮でした。標準偏差については、なぜルートがつくのかという計算過程が理解でき、正規分布の場合にデータの約95%が±2個分の範囲に収まるという納得感を得ることができました。これまで平均を取るだけで思考が止まってしまっていた部分を、散らばりの視点からデータ活用の具体的なイメージに結び付けることができました。 移住データで何が見える? また、人口減少対策において活用される移住者データを分析することへの関心が高まりました。各市町村の移住者データを様々な属性で分析し、特に年齢や家族構成の散らばりを調べることで、どの施策に注力すべきかを推測するひとつの手法となり得ると感じています。現状、移住促進施策はUターン促進とIターン促進の大別がなされており、例えばUターンでは地元を想う集まりの取り組みを強化し、Iターンではボランティアや副業などにより継続的な関わりを持つ関係人口への支援を強化するという方針です。こうした大まかな区分に加え、より具体的な属性の分析が進むことで、移住理由を数値的に捉え、具体的な施策検討に役立てることができそうです。 今後の分析計画は? 今後は、所管部署に対して詳細な個別データの入手が可能かどうか問い合わせる予定です。データが手に入れば、エクセルを用いた分析に取り組みたいと思っています。特に県全体と沿岸地域の違いを明らかにすることで、一緒に施策を進める市町村の担当者や移住コーディネーターの方々の取り組みにも影響を与えられるのではないかと感じています。5月20日(火)に、所管部署の担当者が意見交換に来訪する予定のため、その際にデータ入手の依頼を進めるつもりです。

データ・アナリティクス入門

比較で見える、成長の瞬間

分析の基本は? 分析の本質は「比較」にあります。まず、分析は①プロセス、②視点、③アプローチの3つの軸で進めることが基本です。プロセスは大きく4つのSTEPに分かれます。まず目的や問いを明確にし、その問いに対する仮説を立てます。次に、既にあるデータや新たに収集する情報(見る、聞く、行う)を活用してデータを集め、最後に分析によって仮説やストーリーを検証していきます。データ収集時は、サンプリングバイアスや設問設計の影響に注意し、適切なA/Bテストの実施も視野に入れます。 重要視点は何? 次に、分析を行う際に重要な視点は5点あります。まず、インパクト:どの程度の影響があるかを把握し、優先順位をつけること。次に、ギャップ:比較対象や軸を明確にし、どの部分が異なるのかを確認すること。さらに、トレンド:時間の経過による変化の傾向を把握し、異常な部分を見つけること。加えて、ばらつき:全体の分布がどれだけ偏っているかを平均値や中央値などで見ること。そしてパターン:全体や変曲点から法則性を読み取ることが大切です。 グラフの工夫は? また、アプローチとしては、グラフや数字、数式を用いてデータを視覚化する手順があります。まず仮説と伝えたいメッセージ、次に比較対象を明確にし、どのグラフを使用するかを検討します。一般的な項目の比較では横棒グラフやウォーターフォールチャート、時系列の変化を示す場合は折れ線グラフや縦棒グラフ、構成や分布を表すにはヒストグラムや円グラフ、相関関係を示すには散布図が有効です。横棒グラフは特に多用されますが、加工に手間をかけることでより分かりやすくなります。 日常の見直しは? また、日常の業務や振り返り、目標設定・計画立案において、MECEや層別分解といった手法を使いながら、固定観念や偏った思考を見直し、仮説思考を鍛えることも重視しています。社内では、数字や思い付きだけで次を考えるのではなく、定量・定性データ分析の手法を共有し、分析は「比較」に基づくという前提と、意思決定を目的とするという考えを全員で理解しています。この目線合わせのもと、各種フレームワーク(たとえば3C、クロスSWOT、セグメンテーション/ターゲティング/ポジショニング、4Pなど)を取り入れながら、What/Where/Why/Howのステップを踏んで分かりやすいビジュアル資料を作成し、あるべき姿を説得力ある形で提案できるよう学び続けています。

データ・アナリティクス入門

仮説とデータで勝つ戦略

仮説は本質か? WEEK4では、仮説を立てそれをデータで検証する思考法を学びました。仮説は「感覚」ではなく、根拠ある問いとして設定し、目的に合ったデータを収集・分析することが大切であると理解しました。たとえば、あるターゲット層に向けた広告の効果については、申込経路や具体的な単価など、定量的なデータをもとに検証することで、説得力のある改善策を導き出すことが可能だと感じました。 4Pで本質見出す? また、マーケティングの4P(Product、Price、Place、Promotion)の視点から仮説を組み立てることで、問題の本質や見落とされがちな課題が浮かび上がることにも気づかされました。特に、費用対効果を比較する際は、単なる表面的な数字ではなく、単位あたりの価値を基準に判断する重要性を実感しました。 検証と戦略は? この一連の流れ、すなわち仮説の設定、データの収集、検証、そして改善への取り組みは、単なる分析作業に留まらず、意思決定や戦略立案の基盤となることを再認識させてくれました。実際に現場で改善を実行するためには、データを正しく読む目と、仮説を深める思考の両方が必要であると感じました。 販促成功の鍵は? さらに、講師養成講座の販売促進においては、WEEK4で得た知見が「感覚」ではなく根拠ある判断を下すための基盤として活用できると考えます。広報活動における意思決定やターゲットの把握、また販促効果の見直しなど、戦略設計全体に渡り、大いに役立つと感じました。 計画実行は可能か? また、マナー講師養成講座の促進に向けた具体的な行動計画を4週間で立てました。 まず、Week 1では、ターゲット別に仮説を設定し、販促チャネルの効果についても仮説を立て、データ収集の項目を決定しました。 次に、Week 2では、過去数年間の申込者データを整理し、広報媒体ごとの広告実績を収集、さらに簡易なアンケートも実施しました。 Week 3では、ヒストグラムや円グラフなどを用いてデータの可視化を行い、費用対効果の高い媒体を絞り込むと同時に、仮説の正否を検証し、重点ターゲットを確定させました。 最後に、Week 4で、ターゲット別のプロモーションを再設計し、重点媒体への予算を再配分するとともに、効果検証体制を整えることで、改善策を実行に移しました。 この行動計画は実効性が高いと自分なりに評価しています。

データ・アナリティクス入門

小さな復習が未来を開く

比較の価値って何? 「分析の基本は比較」という視点を再認識しました。自分と他者、自分がありたい姿、そして現在の自分を丁寧に比較することが、より深い洞察へとつながると実感しています。また、学習においては一夜漬けややっつけ仕事ではなく、たとえ1日5分の復習でも習慣として続けることが重要だと痛感しました。特に、ビジネスの現場における影響度を考えると、その積み重ねが大切だと考えています。 原因の探し方は? 分析のプロセスでは、結果だけでなく原因を深く掘り下げる姿勢が必要です。数字に裏付けられたストーリーを構築するためには、飛びつかず、しっかりと要素を分解して検証することが求められます。やみくもな対応では、納得感や信用を得るのは難しいと感じました。 課題はどこにある? まず、フレームワークなどの問題解決の手法については、理解しているつもりでも実際の問題に直面すると活用できていない部分が浮き彫りになりました。たまたま効率化には成功したものの、その他の面では十分に実践できておらず、今後、時間のかかる業務のプロセス改善に取り組む必要があると考えています。 新知識はどう活かす? また、ABテストといった新たな知識の習得ができた点は大きな収穫でした。勉強の習慣化に向け、意識的な時間確保と無駄時間の削減に努め、受講者のコメントからも自分の表現不足を認識する機会となりました。講座終了後は、講師の授業や動画、受講者の意見を総復習し、理解をさらに深めるつもりです。 図解で見やすく? さらに、シンプルながらも資料に図を取り入れることで、情報を視覚的に整理する試みも始めています。作成技術は向上途上ですが、引き続き動画などでスキルアップを目指していきたいと思います。 仮説の不足は? 一方で、学び続ける意欲はあるものの、仮説を作成する基礎知識が不足しているため、仮説の質や数が十分でなく、次につなげることが難しいと感じました。仕事におけるレアケースの振り返りや因果関係の検討が、これからの課題であると考えています。結果だけに注目するのではなく、その背後にある原因を明らかにすることがポイントとなります。 本質をどう捉える? 今回の学びで特に印象に残ったのは、「目に見えるものにすぐ飛びつかない」という点です。大切な要素は必ずしも目に見える形で現れるわけではないという教訓を、今後の業務にも活かしていきたいと思います。

データ・アナリティクス入門

グラフと平均値で掴む分析術のコツ

グラフは何を示す? グラフの活用法とその分析時の手法について考えます。まず、円グラフは各要素の割合を確認したい場合に使用します。一方、ヒストグラムは全体のばらつきを視覚的に把握したい時に便利です。グラフを活用する際は、事前に仮説を立て、その仮説に基づいて予測データと実際のデータを比較し、深堀することが重要です。 平均値はどう使う? 分析手法としては、様々な平均値があります。単純平均はただ平均値を求める方法です。加重平均は重みを考慮して算出され、例えば東証株価指数がこの方法を用いています。幾何平均は成長率や平均何倍になるかを知りたい時に使用されます。外れ値の影響を避けたい場合は中央値を用いるとよいでしょう。また、標準偏差を利用することで、データのばらつきを把握できます。標準偏差が小さいほどデータは均一であることを示します。これに基づき、2SDルールでは95%のデータが大よその範囲内に収まるとし、5%のデータは外れ値とされます。 リスクはどう把握? 施設のポテンシャルや価格の分布を分析する際には、ヒストグラムや散布図を使うことで、戦略に対するリスクを特定できます。例えば、ポテンシャルの高い施設で高コストの外れ値がある場合、戦略的値下げの必要性を検討する余地があります。また、小さい施設で安価なコストの外れ値はベンチマークとして他施設に引き合いに出されるリスクとなる可能性があります。 医療データの精度は? 医療機器のデータ精度を分析する際、標準偏差を利用して精度の精確性を確認することができます。業界の標準として、変動係数CVが2%以下であれば精度の担保がされているとされています。変動係数は標準偏差を平均値で割ることで算出されますので、まず標準偏差を求める必要があります。特に機器の精度が外れ値を持たず、許容範囲内に収まることが求められるため、標準偏差の知識は重要です。 適正価格はどう算出? 価格交渉の際、統一グループやGPO施設カテゴリ内の平均価格やベンチマークの引き合いがあります。この際、どの「平均」が使用されているかを確認し、データを鵜呑みにせず、グラフや散布図、加重平均や中央値を用いて適正価格を示すことが重要です。 仮説はどこから? 最後に、分析に取り掛かる前に仮説を立てることが大切です。仮説に正解はありませんが、経験に基づいた想像力を活かし、いくつも仮説を洗い出すことが有益です。

データ・アナリティクス入門

思考のクセを正し、問題解決力を高める方法

問題解決のステップをどう活用する? 問題解決の4つのステップ、すなわちWhat(問題の明確化)、Where(問題箇所の特定)、Why(原因の分析)、How(解決策の立案)を学びました。私の思考のクセとして、Whatを決め打ちしてしまうことや、Howの展開に意識が向きすぎることがあります。そのため、Whatに関しては目の前の課題が全体構造のどこに位置づけられているのかを確認するよう意識しています。Howについては、Whatの構造を理解し、Where→Whyを経てしっかりと導き出すことで、数ではなく説得性と精度を高めていきたいと考えています。 A/Bテストを成功させるには? A/Bテストについては、比較検証を目的とするため、以下のポイントを理解しました。 - 複数の要素を同時に変えると検証が難しくなるため、このようなことは避ける。 - 同列で比較する必要があるため、期間・ターゲットなど条件をできるだけ揃える。 - 低コストで実施できるため、トライ&エラーを重ねて精度を上げていく。 購入者定着の課題をどう解決する? 「商品Aの購入者定着」という課題に対しては、一旦立ち止まって状況を整理しました。例えば、購入者定着を要素分解(要素集約)すると、上位階層に売上向上という課題があります。本質的な課題としては、「売上向上があり、分解すると新規と定着に分けられ、データで補足すると新規の向上が売上の変数として大きく影響する」という課題に変わる可能性があると捉え、4つのステップを視野を広げるためと、要素を絞り込んで確度を上げるために活用していきます。 広告効果の測定には何が必要? ABテストは広告の売上効果を測る際に用いたいと考えています。しかし、売上に関わる変数(広告外のプロモーションや価格など)が多いため、「広告だけの効果」を測るのが難しいです。この点についてアドバイスが欲しいです。 課題特定を円滑にするには? 現在取り組んでいる各部署の伴走案件において、上記の4ステップを課題特定に活用しています。会社上層部からの指示や慣習などから使用するデータや活用方針がある程度決まっているため、他の選択肢を持てない方もいます。そういった場合、一度立ち止まって課題の要素分解を行うよう促しています。月内に7つの案件があるため、事前に各部署の業務理解を深め、広い視野で課題を捉えることを意識して伴走します。

クリティカルシンキング入門

目的を明確に!効率的な問題解決法とは?

学びを日常にどう活かす? これまで学んできた内容を全体的に復習しました。その中で、改めて「目的を明確にすること」と「問いを立てること」の重要性を再認識しました。人間の思考は主観に偏りがちで、そのために本質からそれた部分に焦点を当ててしまうことがあるという前提を持ちました。自分の思考が偏らないようにするためには、まず物事の全体像を把握し、イシュー(課題)を特定することが大切です。そのためには具体と抽象を繰り返し、様々な角度から物事を見る必要があります。この過程でイシューを特定し問題の本質を明確に捉えることが、効率的な情報処理に繋がると改めて感じました。 情報処理の効率化とは? この学びは日常の様々な場面で活用できると思います。たとえば、報告・連絡・相談(報連相)、プレゼンテーション、社内外の会議、問題定義や課題解決時などです。自分の主観で物事を進めていないか、イシューを特定できているかを常に確認していきたいと思います。また、人との業務上の会話の中でも相手がイシューを特定できていない場合に、自分からイシューを明確にすることで会話がスムーズに進むので、この点を意識していきたいです。 効果的な問題解決法は? 何事も着手する前に立ち止まり、「目的を明確にすること」「全体像を把握しイシューを特定すること」「伝える内容と目的を明確にすること」を実践していきます。具体的には次のような場面・行動を考えています。 1. **データ分析の際に仮説を立てる** - 行動: データを単純に見るのではなく、まず全体像を把握し、問いを立ててから分析を行います。問いに基づき、どのデータが重要かを判断し、結果を検証するプロセスを経て分析の精度を高めます。 - 理由: 問いを立て、分解し、結果を検証することで、より深い洞察を得ることができます。 2. **プロジェクトやタスクの問題解決における代替案の評価** - 行動: 問題が発生した際、単一の解決策に飛びつくのではなく、複数の代替案を出し、それぞれのメリットとデメリットを比較検討します。そして最も効果的な方法を選択します。 - 理由: クリティカルシンキングを活用することで、短期的な解決策ではなく、長期的に効果的な解決策を見つけることができます。 これらの行動を日常の仕事に取り入れることで、より効果的で効率的な業務遂行を目指していきます。

データ・アナリティクス入門

データ分析で成果を引き出す方法

CTRとCVRはどう分析? プロセスを段階的に考えることは、データ分析において非常に重要です。例えば、CTR(クリック率)やCVR(購入率)を比較することで、プロモーションの効果を測定します。この段階で、CTRが高い場合はターゲットユーザーに適した場所でプロモーションが行われているか、または掲載しているクリエイティブがユーザーに合致していることが考えられます。同様に、CVRが高い場合は購入を促すことができていたり、サイトのUI/UXが優れている、商品そのものが魅力的であるという理由が考えられます。これらの指標を基に課題を抽出し、改善策を講じることが必要です。 仮説はどう作る? 原因を仮説立てる際には、思考の範囲を広げることが求められます。具体的には、フレームワークを利用したり、反対概念を活用することが有効です。最適な解を見つけるためには、初めに適切な判断基準を考え、それに基づいて評価を進めます。判断基準に重要度の違いがある場合は、重み付けを行い、比較検討を通じて最適な解を選びます。 費用対効果はどう判断? プロモーションの費用配分を検討する際には、有料広告のCTRやCVR、各コストを再度検証し、費用対効果の観点から最終的には投資対効果への移行を考えます。また、メールマーケティングにおいては、ターゲットに適したバナーを見つけるために、ビジュアル、テキスト、クリエイティブの観点からABテストを実施します。 意思決定は合理的? 中長期的には、会社全体で「勘と経験に頼る意思決定」を「データ分析を用いた合理的な意思決定」へ移行することを目指します。このためには、誰でも気軽に分析ができる環境を整え、学びとモチベーションを高め、業務効率化により時間を確保することが重要です。 効果検証はどう実施? 投資対効果を考える上で、判断基準の検討、検証方法の確立、経営層への効果的なアプローチが求められます。メールマーケティングにおけるバナーのABテストの実施例として、秋の行楽シーズンを訴求する際に、ビジュアル面では人物の有無やテーマ、テキスト面では金額や特典、クリエイティブ面では静止画や動画を考慮に入れることが挙げられます。 人材育成はどう進む? また、データ分析における人材を育成するために、社内の教育プログラムを活用し、DX変革を推進するための環境作りも必要です。

データ・アナリティクス入門

対概念で拓く経営戦略の新視点

対概念の意義は何? 対概念とは、ある概念に対して反対または対照的な意味を持つ別の概念を考えることで、物事をより明確に理解し議論の幅を広げる手法です。問題解決に取り組む際は、原因をプロセスに分解する方法、複数の解決策を根拠をもって絞り込む視点、A/Bテスト方式を活用した実践検証、そしてデータ分析を組み合わせた段階的な課題抽出と検証の流れが重要となります。 M&Aリスクはどう考える? 例えば、M&A案件のリスク評価と意思決定においては、ポジティブな要素であるシナジー効果と、ネガティブな統合リスクを対概念として捉え、財務リスク、組織文化、オペレーションといった要因に分解して考えます。各リスク要因を定量化することで、M&A後の成功確率を高めるためのより正確な判断が可能となります。 統合戦略はどれが最適? また、企業の経営戦略策定、特にM&A後の統合戦略においては、段階的統合と急速統合という二つのアプローチを検討し、A/Bテスト方式でそれぞれの効果を比較します。統合プロセスの進捗データや業績、従業員満足度といった具体的な指標をもとに、どちらの戦略がより良い成果を生むかを実証的に評価していきます。 リスク評価の秘訣は? さらに、リスク評価のためのフレームワーク作成では、過去の成功事例や失敗事例をデータベース化し、財務、組織文化、オペレーション、市場環境といった指標を基にリスク評価シートを作成します。これにより、各案件ごとのリスクが客観的に評価され、精度の高い投資判断を導き出すことが期待されます。 定量化結果は何? 続いて、データ分析を用いた定量化では、財務データや従業員エンゲージメント、企業文化の適合度を測る指標を設定し、回帰分析や相関分析を活用します。特に、文化の不一致が従業員の離職率に与える影響などを数値化することで、過去のM&Aデータから成功パターンや失敗パターンを明らかにし、これを次の意思決定に生かすことが可能となります。 結果の信頼はどう確保? 対概念とA/Bテストを通じて物事を深く理解しようとする姿勢は非常に評価できます。今後は、どのような状況で対概念を活用するのが効果的か、またA/Bテストで得られた結果の信頼性をどのように確保していくかといった点について、さらに思考を深めながら実践につなげていくことが求められます。

マーケティング入門

販売戦略で未来を切り拓く氣づき

製品の売上はどう変わる? 改めて、「誰にどのように売るか」によって、同じ製品でも売上が大きく変わることを学びました。特に印象に残ったのが以下の点であり、今後の業務に活かしていきたいと考えています。 顧客の印象をどう作る? まず、顧客に適切なイメージを持ってもらうことの重要性です。私はSaaSプロダクトの販売に関わっていますが、開発者の想いやこだわりに影響を受けすぎていたように思います。開発者の想いを訴求ポイントとして効果的に活用することは大切ですが、それが顧客にどのように受け取られるかについても見直したいと考えています。また、「顧客にどのようなイメージを持ってもらいたいのか」については、開発からマーケティング、セールス、カスタマーサクセスに至るまでの過程で多少のズレが生じているように感じます。チャネル全体で共通のイメージを描けるよう、ミーティングなどを通じてコミュニケーションを図っていきたいです。 新しさはどう伝える? 次に、イノベーションの普及に向けた要件についてです。現在市場にあったプロダクトの後続として新しい試みを取り入れた製品を提供していますが、新しさをアーリーマジョリティに訴求する段階で、その新しさが受け入れられにくいという状況に直面しています。まずはイノベーションの普及要件を洗い出し、どの要件を満たしているのか、どの要件は伝え方を工夫する必要があるのかを明確にしたいと思います。 戦略はどう練る? 次に、自社プロダクトの見直しと来期以降の戦略立案について。11月が期末ですので、来期の戦略を立てる状況にあります。まずは自社プロダクトの見直しから始め、戦略とともに「顧客に持ってもらいたいイメージ」の統一を目指したいと考えています。 ターゲットは誰? また、ターゲットの検討について。これまでカウンターパートを経理部に絞っていましたが、直近の機能開発で新たな訴求先の可能性が見えました。今までの固定観念から離れ、誰にどう魅せるべきかを再考したいと思います。 部署間の連携は? 特に、他の部署のミッションや問題点、日々考えていることについての理解を深めるため、他部門との商談に参加することを検討しています。そして、経理部以外の部署との課題感や予算に対する裁量権を比較し、新たなターゲットへの訴求が必要かどうか判断していきたいと思います。

データ・アナリティクス入門

プロセス重視で解決策を見つける秘訣

解決策立案の重要性を痛感 今回は、問題解決のプロセスである「What」「Where」「Why」「How」の「How(解決策の立案)」について学びました。このステップでも、「What」「Where」「Why」同様、複数の仮説を立てることが重要で、仮説の質が問題解決の精度に大きな影響を及ぼすことを改めて実感しました。プロセスに分ける、対概念を活用し対に分けるといったアプローチを学びました。 最適解の選び方を知ろう また、最適な解決策を選択する際には、複数の判断基準を持ち、その重要度に基づいて重み付けを行い、基準を揃えて総合的かつ定量的に評価することで、決めつけや思い込みを排除し、客観性と説得力を担保できると学びました。 仮説検証をハイサイクルで さらに、仮説の確からしさを求めすぎず、仮説検証をハイサイクルで実施することで、より良い仮説検証が行われ、結果として本質的な解決策に結びつくことを理解しました。 共通の留意点とは? 「What」「Where」「Why」「How」の各プロセスで共通して留意すべきポイントは以下の4点です。 1. 目的と仮説を明確にする。 2. 複数の仮説を立てる。ビジネスフレームワークや「分ける」という概念を活用する。 3. 仮説を検証する際は、基準を揃え、分析結果を基に定量的に評価する。 4. 仮説の設定と検証をハイサイクルで行う。 計画策定に向けた意識改革 次期中期事業計画の策定時には、現場で培った経験や勘で導き出した答えを、ビジネスフレームワークを利用して正しいプロセスを一つずつ踏んで答え合わせする意識を持ちたいと思います。ビジネスフレームワークの選定、指標や基準の設定、仮説の構築、データの収集・比較・定量評価、仮説の検証、本質的な解決策の選択など、あらゆる場面で客観性と説得力を備えた事業計画を策定することを目指します。 日常業務での実践ポイント 日々の現場業務の中でも、以下の2点を意識して深く考える癖を身に付け、具体と抽象を行き来することを習慣化したいと思います。 - より高い視座とより広い視野でものごとを見つめるマインドセットを持つ。 - 仮説の確からしさを求めすぎず仮説検証をハイサイクルで実施する。 心に留めておくべきキーワードは「一つ一つ丁寧に」「プロセスを重視する」「胸を借りる」です。

「活用 × 比較」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right