データ・アナリティクス入門

ABテストで広がる検討の可能性

ABテストの活用法は? 原因を探るツールとしてご紹介いただいたABテストについて、既に知識はあったものの、問題解決プロセスにおける位置づけと合わせて理解できたことで、具体的な利用シーンがイメージしやすくなりました。体系的に整理することは、自身で活用する際や他者に説明する際にも有効だと感じています。 業務検討テンプレートは? 業務に取り入れるためには、具体的な状況を想定し、各パターンごとに検討方法のテンプレートを構築しておく必要があると実感しました。こうしたテンプレートを整備することで、検討に着手するスピードが速まり、業務の効率化にもつながると考えています。 どの要素が影響する? たとえば、よくあるデータ分析の依頼を想定し、受注額に影響を与える要素を洗い出して、その関連性を検証するパターンをいくつか作成しようと思います。これにより、関係性の強い要素から受注額を予測する、といった検討がよりスムーズに進むと期待しています。

リーダーシップ・キャリアビジョン入門

リーダーシップを学び、変える力を磨く

リーダーシップの開発法は? リーダーシップは生まれつきのものではなく、後天的に開発できるという点が非常に興味深いです。また、環境要因やメンバーの適合性を見極め、状況に応じて仕事の任せ方を変える重要性についても学びました。これはパス・ゴール理論に関連しています。 メンバーへの仕事の任せ方は? 普段の業務においては、メンバーに仕事を任せる際に活用できそうです。例えば、新入社員に対しては物事の背景や目的をしっかりと伝えた上で、具体的な手順まで指示して仕事を任せることが効果的です。一方で、ある程度の経験や知識を持つメンバーには、タスクの目的や背景を伝えるにとどめ、実際のやり方は個々人に任せるといった柔軟な対応が求められます。 自主性を尊重する工夫とは? このように、仕事を任せる際には対象者に応じてアプローチを変えることが不可欠です。新入社員には詳細な指導を行い、経験豊富なメンバーには自主性を尊重する形で任せる工夫が重要です。

戦略思考入門

限られた資源で成果を出す秘訣

優先順位はどう判断? 限られた資源で成果を最大化するためには、まず優先順位を明確にして、取り組むべきこととそうでないことを判断することが重要だと感じました。 断捨離の決断は? また、何かをやめる際にはエネルギーが必要ですが、現状が本当に最適かどうかを中長期的かつ全体最適の視点で客観的に検証し、データに基づいて判断することが求められます。必要と判断した場合は、勇気を持って決断することが大切です。 作業の見直しどう? 日々の業務の中では、ただ習慣として続けていることや無駄な作業がないかを常に確認し、他の方法で代替できないか、または廃止できないかを見直すことが必要です。 業務配分は最適? さらに、生産性向上が求められる現状においては、限られたリソースをより効率的な業務に配分するため、客観的なデータを活用して何を選択し、どの業務を見直すべきかを検討し、その結果を事業計画に反映させていきたいと考えています。

データ・アナリティクス入門

仮説と比較で見える成長の軌跡

A/Bテストの見直しは? 業務において、あまり考えずにA/Bテストを実施していたことに気づきました。今後は、企画段階からバイアスを取り除く方法を模索し、比較のためのベースラインを整えることに留意したいと考えています。仮説に基づいてどのように探索を進めるかが鍵となり、改めて分析は「比較」が非常に重要であると実感しました。 フレームワーク活用法は? また、これまで学んだフレームワークや考え方(3C、4Pなど)を積極的に取り入れていきたいと思います。習得がすぐにはいかなくても、慣れるまで継続して実践し、しっかりと身に着けていく所存です。 データ分析はどう行う? さらに、A/Bテストを実施する際には、可能な限りランダマイズすることや、比較に必要なサンプル数や実施期間を十分に検討することが重要だと感じました。分析時にも、どのような背景や手法でデータが収集されたのかを意識しながら、より正確な評価を行えるよう努めていきます。

戦略思考入門

理想と現状をつなぐ戦略の鍵

戦略の基本はどう? 戦略の基本的な考え方やフレームワークについて、知らなかった点が多かった分、大変学びがありました。特に、理想の姿(ゴール)を明確にし、そこに向けて現状とのギャップを埋めていく考え方は、今後の業務でも活かしていきたいと感じました。 ゴールはどう決める? 今後は、これまでの背景や個人的なやりたいことに基づく計画ではなく、状況に応じたフレームワークを適用し、明確なゴールを目指していきたいと思います。たとえば、SWOT分析は基本となるフレームワークだと捉えており、他社の事例を参考にしながら自社にあてはめることで、より効果的な戦略策定ができると感じました。 戦略構築はどう進める? これまでの実務経験も参考にしつつ、今後はフレームワークに沿って戦略を構築していきたいと考えています。そして、そのフレームワークを活用できるかどうかは、今後の戦略策定の中でメンバーの意見も取り入れながら進めていく予定です。

データ・アナリティクス入門

実践で磨く!データ活用のヒント

学びはどんな感じ? これまでの学習を通じて、データ分析の基礎から実践的な活用方法まで、一連の流れを体系的に学ぶことができました。単なるデータ処理にとどまらず、どのように課題を設定し、仮説を立て、検証するかという思考プロセスの重要性を改めて実感しました。 重要な点は何? 学習内容を振り返る中で、自分にとって重要なポイントを再確認することができました。今後は、業務の提案文書作成時に、分析を活用して根拠を明確に示す取り組みを進めたいと考えています。また、日頃から目にするデータがどのように役立つかを意識する習慣を身に付けたいと思います。 次への一歩は? さらに、知識の定着を図るため、学習を終わらせずに統計検定の取得を目指すとともに、業務での分析においては各種フレームワークを適用し、実践で活かしていきます。具体的には、営業店の業務負荷の要因分析を実施し、仮説を立ててデータに基づく検証を行いたいと考えています。

データ・アナリティクス入門

ギャップを超える成長日記

無意識の決めつけは? 現在担当している業務では、欲しい回答を得るために無意識に決めつけをして分析や結果報告をしている可能性があると感じました。今後は、「モレなくダブリなく」の原則に基づいて、再度見直しを実施していきたいと考えています。また、問題解決は単にマイナス面を改善する対策だけでなく、あるべき姿とのギャップを明確にして、そのギャップを数値で示しながら埋めることが重要であると改めて実感しました。新サービスの社内展開においても、従来のアプローチでは行き詰まりを感じていたため、この考え方を取り入れて対応策を検討していこうと思います。 現状とのギャップは? 今後は、社内で提供しているサービスや新たに展開を進めるサービスに対して、まずあるべき姿を明確に定め、現状とのギャップを具体的に示します。その上で、ロジックツリーなどを活用し、問題をモレなくダブリなく分解することで、あるべき姿に向かって着実に対応策を進めていく所存です。

データ・アナリティクス入門

幾何平均で見える新世界

なぜ異常値が出る? これまで、代表値や単純平均、加重平均は業務で使用してきましたが、幾何平均、中央値、標準偏差は財務業務では使う機会がほとんどありませんでした。特に、売上の成長率を計算する際に、幾何平均を用いなければ異常値が算出されてしまう点には驚きを覚えました。このことについて、なぜそのような結果になるのか、また今後どのように活用できるかを、再度整理する必要があると感じています。 今後の計算はどうする? また、これまで主に財務データを扱ってきたため、幾何平均や中央値、標準偏差の計算・分析を実施する経験がほとんどありませんでした。そこで、まずは顧客の年齢層データを対象に、中央値や標準偏差を計算し、その分析結果を社内で共有する予定です。今後は、財務業務に応用できるデータとして、幾何平均、中央値、標準偏差が有効に活用できる分野を探り、エクセル関数を用いた計算方法についても調査し、実際に計算していきたいと考えています。

クリティカルシンキング入門

ピラミッド構造で極める伝達力

どうして文章が難しい? 「相手に伝える文章を書く」という課題は、非常に骨が折れるものでした。 整理すると何が見える? 伝えたいことを段階的に整理し、結論・根拠・なぜならという要素に分解することで、自分の思考を客観的に整理できる点が非常に魅力的でした。 組み立ての秘訣は? いわゆるビジネス文章は、ただ筆を進めるだけで書かれるものではなく、図やピラミッドストラクチャーを用いて組み立てることで、シンプルで分かりやすい構成が可能になると感じました。 業務にどう応用する? 実際の業務においても、この考え方は大いに役立っています。特に、関係各所への説明責任が求められる状況では、各所の状況や要求事項を整理して発信することが重要です。 今後の展望は? 今後は、ピラミッドストラクチャーの整理方法を日常的に活用し、ビジネスメールの作成においても、結論に対して適切な根拠を示すよう意識していこうと考えています。

データ・アナリティクス入門

データ分析の価値を広げるために

データ分析の本質とは? Week 1の講義・学習で新たに学んだ点は以下の3点です。①データ分析の本質は「比較」、②データ分析は必ずしも「定量的である」必要はない、③データ分析の前の条件設定が重要。前提条件が揃っていないと正しい分析はできません。 分析結果をどう共有する? 社内データの活用時に、前提条件・分析目的・分析結果から行うアクションを利害関係者に共有することで、共通の目的達成のために議論ができると感じました。データ分析は一方的に行い、結果を発信するものではないということを広く共有し、浸透させたいと考えています。 データ活用を身近にするには? データに関する業務が属人化しており、”データ活用=特定の人の特別な仕事”になっている部分があります。現在扱っているデータは広く社内で活用可能な内容も含むため、よりデータ活用を身近に感じてもらえるような機会(社内セミナー、報告会)を増やす必要があると思います。

データ・アナリティクス入門

ヒストグラムで読み解く営業戦略

平均の捉え方は? これまで、平均値については単に合計を個数で割るだけの計算に留め、データのばらつきにはあまり目を向けていませんでした。加重平均や標準偏差といった考え方は知っていたものの、実際の活用方法については具体的なイメージが薄かったため、今回の講義でその使い方を理解することができました。 顧客層の把握方法は? この学びを自分の業務に活かすため、地区全体の顧客売上データをヒストグラムで区分し、顧客層ごとの購買力を把握する手法に注目しました。顧客の売上ランクごとに適切な営業施策を検討し、個別にアプローチできる可能性を感じています。 実践で効果は? 具体的には、まず売上データを取得し、実際のヒストグラムを作成して区分を始めます。その上で、各区分ごとに合わせた営業施策の計画と実施を行い、売上数字の定点観測で変化を読み取ります。このプロセスにより、施策の効果を判断し、次の戦略検討に役立てる予定です。

データ・アナリティクス入門

目指す姿とのギャップを分析

手法活用はどうする? 5W1Hや層別分解の手法は知識として持っていましたが、実際の業務では目の前の課題にとらわれやすいと感じています。今後は、これらの手法を意識的に取り入れ、より体系的な分析を実施したいと思います。 理想との違いは何? また、分析を行う際には現状とあるべき姿とのマイナス差に注目することが多かったことから、目指す姿とのギャップに関する分析が不足していると感じました。今後は、理想との比較も含め、より実践的な分析に活かしていきたいと考えています。 計測軸は見直すべき? 各部門の工数実績を分析する中で、計測軸をMECEの観点から整備するためにその他の軸も設けています。しかし、全体の一定割合が「その他」に分類されていることから、課題の見落としが発生する可能性があります。このため、計測軸の見直しを行うとともに、現状のあるべき姿との比較だけでなく、目指す姿に対する分析も加えて実施していく所存です。

「活用 × 業務」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right