クリティカルシンキング入門

データ分析で発見した新たな視点

分解ってどう使う? データ分析を行う際、「分解」の重要性とその手法について新たな知識を得ることができました。単に数字を切りの良いポイントで区切るのではなく、まず全体を適切に定義し、必要な情報を明確にした上で、どこで分解すれば全体像が把握できるのかを試行錯誤することが重要であると演習を通して理解しました。 数字の見える化ってどう? さらに、数字をグラフ化して視覚的に表現したり、比率に変換して加工することで、数字だけでは発見しづらかった情報が明らかになることを学びました。分析の初めには、全体を定義して目的を設定し、MECEを意識しながら抜け漏れなく分析を進めることが、業務の効率的な進行に寄与することを認識しました。どのような結果になっても、価値や発見があり、それらはすべて自らの成長に繋がるものだと考え、ポイントを押さえて思考を続けていきたいです。 目的設定ってどうする? 売上やWebページのアクセス数を分析する際に、今までは表面的な数字を追うだけで、原因や改善点が明確になりませんでした。しかし、まず全体を定義して目的の方向性を決めることから始め、MECEを活用しながら漏れや重複を避けつつ課題を分解して解決を図りたいと考えています。分解後には、グラフや比率といったさまざまな視覚化方法を用いて、最適な分析手法を見つけ出し、短期・中期・長期目標の達成に必要なアプローチを定期的に戦略的に見直していきたいと思います。 毎月どうチェックする? 売上やWebページのアクセス数の分析を日々確認し、毎月、前月との比較を行いレポートを作成したいと考えています。基本的には、最初に決めたMECEを活用した分解で分析を進めていきますが、毎月自身の分析方法で問題が解決できているかを見直し、分類についても考え続けたいです。 PDCAをどう進める? 単一の仮説ではなく、2~3つの仮説を立て、その中から最も信頼性があり改善しやすいものを選び、行動に移していきます。2週間から1ヶ月試行し、うまくいかない場合は次の仮説で改善するというPDCAサイクルを実行していきたいと思います。

アカウンティング入門

収益とコストの秘密戦略

立地と利益の違いは? 同じ飲食業でも、立地や客層、提供する価値によって利益の出し方が大きく異なることが印象に残りました。売上を伸ばすための工夫だけでなく、どこでコストを抑えるかという視点も収益には欠かせない要素です。また、ビジネスモデルごとの収益構造を理解することで、事業の強みや改善点が明確になると学びました。 収益改善の方法は? 今回の学びは、業務における新規プロジェクトの提案時に活用したいと考えています。特に、収益構造とコスト意識を持って企画を立てることの重要性を強く実感しました。例えば、新たなサービスや業務改善の企画を提案する際には、類似ビジネスの収益構造を調査・比較し、「利益の出し方」や「コスト抑制策」を明確に示すことが必要だと感じました。単なるアイデアで終わらせず、採算が取れる仕組みとして説明することが今後のポイントです。 実践の工夫は何? 具体的な行動としては、新聞や記事を通じて他業種のビジネスモデルを日常的に観察し、自社の損益構造に意識を向けながら業務に取り組むことが挙げられます。また、新しい企画を考える際に収益モデルとコスト構造をセットで検討する習慣をつけることで、ビジネスの仕組み全体を意識し、より実現性の高い提案や判断につながると考えています。 低利益の理由は? 一方で、学習の中で疑問に感じたのは、売上総利益率が低くても利益を生み出せるビジネスが存在する点です。原価率が高い業態でも成り立つモデルがあることに驚かされ、その裏にあるコスト構造や工夫をもっと深掘りしたいと感じました。SIerとしてITシステムを提供する業務に携わる中で、飲食業のように「モノを売る」モデルとの違いにも大きな関心があります。特に、人的リソース中心のサービス業における利益構造や、無形サービスの原価の捉え方について、他の受講生と意見交換できればと思います。 利益差の理由は? グループワークでは、「同じ売上でも利益に差が出るのはなぜか」というテーマで、業種を超えて収益構造を比較・議論できると、さらに学びが深まるのではないかと期待しています。

データ・アナリティクス入門

データ分析で広告効果を最大化する方法

サーチとコンバージョン分析のポイントは? 私は、定量データの処理方法や割合と実数値の使い分けについて学びました。広告のサーチ数やコンバージョン率を分析する際、実数値で成果を示すと共に、全体の成果に対する割合を表示することで、広告の効果がより明確になります。例えば、特定の広告が他の広告よりも高いコンバージョン率を示す場合、その差を強調するために割合を用いることが有効です。 リーチとフリクエンシーの効果的な可視化 データの加工方法や適切なグラフの選び方について学びました。リーチ(到達)とフリクエンシー(接触頻度)のデータをヒストグラムや折れ線グラフで視覚化することで、どの広告が最も効果的なリーチを達成しているか、または頻繁に接触されたが効果が薄い場合の改善点を容易に発見できます。 データクリーンルームを活用するには? 比較の重要性や仮説に基づく分析について学びました。データクリーンルームを活用する際、テレビとデジタル広告の重複接触を比較することで、効果的な広告の配置や接触頻度を見極める仮説を立て、そのデータを基に改善策を提示します。こうした定量的なデータとその適切な比較により、精度の高い分析が可能になります。 これらの学びを基に、分析プロセスの一貫性を保ちながらデータをより効率的に扱い、効果的な広告戦略を提案できるようになりました。 グラフを使ったデータの伝え方 グラフや可視化ツールを駆使することも重要です。データをグラフやチャートで可視化し、関係者にとって理解しやすい形で伝えます。特に、データの割合や実数値を比較する際には、視覚的に分かりやすいグラフを使用することで、複雑なデータを簡単に理解しやすくし、意思決定をサポートします。 どのように分析スキルを向上させるか? さらに、データ分析スキルの継続的な向上を目指します。新しいデータ分析手法やツールを学び、分析スキルを継続的に向上させます。広告業界で使用される分析ツールやシステムに精通することで、より効率的で精度の高い分析が可能となり、業務の成果を高めることができます。

リーダーシップ・キャリアビジョン入門

メンバーの力を引き出す秘訣とは?

エンパワメントの本質は? エンパワメント・リーダーシップは、メンバーに権限を委譲し、自律性を高めることで彼らの能力を最大限に引き出すスタイルです。このリーダーシップを実行するためには、いくつかのポイントがあります。 目標設定はどう決める? まず、目標設定が重要です。メンバーには、その能力を少し上回る難易度の目標を設定し、それを達成するための計画は本人に任せます。必要であれば支援も提供します。良い目標を設定するためには、メンバーに適した仕事を余裕を持って依頼し、彼らの本音をよく知ることが求められます。これが結果として、メンバーのやる気やモチベーションを高めます。 対応方法はどうする? さらに、依頼内容に応じた対応方法も重要となります。例えば、「分からないからできない」場合は丁寧に説明し、「分かったけどできない」場合には不安を解消するための対話を行います。「分かった、できるがやりたくない」場合には、メンバーがやりたくなるような仕事の渡し方を工夫します。重要なのは、合理的な説明よりも、相手の情緒的な気持ちを大切にすることです。 質問力で成長する? また、メンバーの育成には質問力が重要であり、特にオープンクエスチョンの活用が鍵となります。これによって、メンバーの思考を深め、自律的な問題解決能力が引き出されます。 実践事例は何か? エンパワメント・リーダーシップを活用するため、いくつか具体的な取り組みを行っています。一つは、定期的な1対1のミーティングで、オープンクエスチョンを活用してメンバーの思考を促し、進捗を確認しています。権限委譲では、プロジェクトやタスクをメンバーに委譲し、彼らの自律性を高めて成功体験を積ませています。また、メンバーの成果には具体的で建設的なフィードバックを提供し、ポジティブなフィードバックを通じてモチベーションを高めることを重要視しています。 これらの取り組みを通じて、メンバーが最大限に力を発揮できるよう支援し、組織のミッションを達成する強力なチームを築くことを目指しています。

クリティカルシンキング入門

思考の偏りに気づく!揚げ物と自己反省の旅

自己認識の意義は何? 今回の学習を通じて、私は自由な発想ができる人間が、無意識のうちに偏った考え方をしてしまうことを学びました。それを防ぐためには、「もう一人の自分」を持ち、自分を客観視することが重要であるということです。また、客観的な視点を養うトレーニングとして、他者とのディスカッションが有効であることも知りました。ディスカッションを通じ、自分の意見を述べるよりも、他者の意見を聴くことから多くを学ぶという点が特に印象に残っています。 思考の偏りに気づいたのは? ライブ授業後の懇親会で「揚げ物をからっと揚げるための方法」について話がありましたが、そこで私は早速偏った思考をしていることに気づきました。「もう一人の自分」の視点で考え直した結果、以下の点を補いました。 揚げるコツは何? 揚げ物をからっと揚げるために注意すべきことは3点あります。まず1つ目は揚げ油の温度です。油の温度が下がると、からっと揚げることは難しくなります。挙げ油を多めにするか、揚げる量を少なくして温度を保つことが大切です。また、温度計を使うとわかりやすいです。2つ目は揚げ時間です。材料の種類やサイズに応じて異なるので、注意が必要です。タイマーを利用し、目安の時間で設定することが役立ちます。最後に、衣の作り方についてです。小麦粉を溶く際は混ぜすぎないように注意し、冷たい材料を用いると良い結果が得られます。 改善点はどこに? 以上が揚げ物をからっと揚げるポイントですが、補うべき点や改善点があれば、ご意見いただけると嬉しいです。 伝え方はどうする? さらに、上司に仕事を報告したり、部下に仕事の進め方を説明する際には、伝えるべき情報を整理し、わかりやすくすることが必要だと考えています。また、部下とのコミュニケーションでは、相手の考えを引き出す話し方も意識したいです。話す前に「もう一人の自分」の視点で見直し、考え方に偏りがないか確認する習慣をつけています。相手の話を聞く際も、自分の考えにない点について深く考え、さらに質問を投げかけるように心掛けています。

データ・アナリティクス入門

仮説検証で見つける成長のヒント

どう仮説を練る? 前職で教えられた問題解決の手法は、実践する機会が十分にありませんでした。仮説を立てる際、まずは現状把握が最も重要であることを再認識しています。一つの仮説に直感的にたどり着くことはありますが、そこに固執せず、ほかの可能性も考慮した複数の仮説を検討することが、根拠のある仮説を生み出すポイントだと感じています。 検証の切り口は? 動画の一例で「仮説と検証を繰り返す」という考え方が大変印象に残りました。これまでにも同様の手法を試みたことはありましたが、せいぜい数回で終わってしまい、検証の繰り返しが十分ではありませんでした。そこで、自分自身の検証と例で示された検証方法との違い、たとえばアプローチの切り口などについて、改めて考えてみることにしました。 枠組みの意外性は? フレームワークに基づいて検証する方法も、抜け漏れのない仮説を構築できる可能性を秘めています。フレームワークを利用することで、新たな発想や類推が生まれることが期待できる一方、自由な発想では偏りが生じやすく、適切な仮説検証が難しいと感じています。 時間がかかる理由は? また、他の社員と比べて明らかに時間を要している業務があります。正直なところ、その業務が自分に合っていない、あるいは心理的に好ましくないという言い訳をしてしまっていました。しかし、他者との比較を通じて何が原因なのかを見極め、行動に入る前の準備段階に問題がないか、あるいは結論から逆算したアプローチができているかを、仮説の検証とシミュレーションで実際に検証しているところです。 取り組みは十分? これらの対策は現在進行中です。現状を正確に把握し、問題点を見極めた上で、重要な局面で目指すべき状態や、そもそもやるべきことが実施できているかを確認しています。業務は忙しく時間的制約もありますが、抜け漏れがないか、逆算して工程を検証する取り組みを並行して行うことで、苦手な業務の改善につなげたいと考えています。もしうまくいかなかった場合は、さらなる仮説を立てて改善に取り組んでいくつもりです。

クリティカルシンキング入門

相手の心を掴むグラフ・スライド作成方法を学ぶ

グラフ作成で気をつけることとは? 相手の立場に立ってグラフやスライドを作成することが重要です。以下が学んだポイントのまとめです。 まず、グラフに関して以下の点を注意しました。 1. グラフには慣例があるため、基本的なルールに従うことが重要です。突飛な見せ方よりも、一般的な方法をベースにすることが大切です。 2. 相手が見たときに、「違い」や「強調したい部分」が直感的に理解できるかどうかを確認することが必要です。 スライド作成の効果的な方法は? 次に、スライドについては以下の点に注意しました。 1. 端的に伝えたいことが伝わるかどうかを重視しました。文字の大きさや色の使い方も重要です。 2. 文字の色には連想される色があるため、意図がしっかり伝わる色を選ぶことが大切です。 文章力向上のための工夫は? さらに、文章力に関しては以下を学びました。 1. 文章には目的があり、その目的を明確にすることが重要です。 2. 読み手を意識して、誰に対して書いているのかを考える必要があります。 3. 内容自体も重要で、読んでもらえるかどうかを常に意識することが大切です。 特に、読んでもらうための工夫として以下の点に注意しました。 1. タイトルのアイキャッチは非常に大切です。 2. 読み手がイメージしやすい構成や言葉遣いを工夫することが重要です。 成果をどのように活かすか? また、学びを活かして社内報告用のプレゼン資料や、新幹部向けの研修プログラム作成に取り組みました。報告資料は多数の人が見るものですので、フィードバックを元に改良を繰り返していきます。 軸は「読み手が面白く、学びを行動に移したいと思える」ことを目指して、以下のことを行いました。 1. 実際に研修を実施して、5段階アンケートをMicrosoftフォームスで実施する。 2. その結果を定量的にデータ化し、フィードバックとして活用する。 以上のポイントを踏まえて、自分の仕事に役立つスライドや文章構成を意識して取り組んでいきます。

クリティカルシンキング入門

ビジネス文書・プレゼン資料を一段上の品質にする方法

学習を通じて得た新たな知識とは? 今回の学習を通じて、適切なグラフの選び方やスライドの作成方法、ビジネス文書がどのように読まれるかについて多くの学びがありました。以下に、それぞれのポイントについて述べます。 グラフ選びでデータをより見やすく まず、グラフの見せ方についてですが、データの種類に応じた適切なグラフ形式を選ぶ重要性を感じました。例えば、時系列データには縦の棒グラフ、変化や経緯を表現したい場合は折れ線グラフが有効です。また、要素を表現する際は横の棒グラフ、要素間の比較には帯グラフが適しています。これにより、データが持つ意味を視覚的に明確に表現することができ、プレゼンの受け手にも理解しやすい情報を提供できます。 見る側に立ったスライドデザインは? 次に、スライド作成のポイントについて学びました。特に印象深かったのは、「見る側の視点に立って主題がわかりやすいように」作成することの重要性です。具体的には、グラフなどで見てほしい部分を強調するために矢印を使用することなどです。これにより、視覚的なガイドラインが提供され、見ている人がパッと理解できるスライドを作ることができます。 関心を引くビジネス文書の工夫 ビジネス文書に関しては、冒頭にアイキャッチを置く工夫が特に有用だと感じました。イメージが湧きやすい、意外性がある、具体的な理由や方法を知りたいと思わせるような要素を盛り込むことで、読む人の関心を引き付けることができます。これにより、実際のメールや案内文の返信率向上に繋がることを期待しています。 具体的な実践計画としては、リード向けメール作成の際には1日最低5件はアイキャッチを配置し、試行錯誤を重ねて改善を図るつもりです。また、フォロー結果を分析する際には1か月に1回以上、プレゼン資料の質とグラフの活用を意識して作成します。四半期ごとの報告プレゼン資料にもこれらの学びを反映し、より質の高い資料を提供することを目指します。 以上の点を踏まえ、今後の業務に活かしていきたいと思います。

データ・アナリティクス入門

一歩ずつ踏む問題解決の法則

解決傾向に気づいた? 私がWEEK1で振り返った際、「自分が解決したいポイントや進めたい施策にすぐにフォーカスして、アウトプットに繋げてしまう傾向」に気づきました。この課題に対する解決策が、WEEK2で解説されており、以下の点が特に印象に残りました。 どうして段階を踏む? まず、問題が起きた際にはいきなり手段(How)に飛びつかず、【問題解決のステップ】を順に踏むことが大切だと学びました。具体的には、WHAT→WHERE→WHY→HOWの順序を守り、実際に何が起こっているのか、どこで、なぜ問題が発生しているのかを明確にした上で、打ち手を検討するのが鉄則です。思いつきのアイデアに頼ると、運任せになりがちであるため注意が必要です。 全員で何を合意? 次に、WHATの設定においては、関係する全員で「何をあるべき姿とするか」や「どのようなギャップが存在するか」について合意することが重要だと感じました。定量的な指標が提示されていると、より明確な認識合わせが可能になります。 ロジックで整理する? また、問題解決のプロセスを体系的に進めるために、【ロジックツリー】を活用して問題を分解する方法が有効だと分かりました。ロジックツリーを用いることで、問題の全体像が把握しやすくなり、MECE(漏れなく、ダブりなく)に情報を整理する意識が求められます。 感度はどう磨く? 一方で、動画では「感度の良い切り口」を多数持っておくことが勧められていましたが、その「感度」を高めるのは容易ではないという点は難しさを感じました。一つの案件について、部門や職階の異なる複数の方々に説明し、理解を得る必要がある中で、この学びを活かし、まずは問題解決のステップを順を追って実践することが、案件の進行をスムーズにするために重要であると考えています。 問題解決、どう進む? これからは、ロジックツリーで問題の全体像をつかむところから始め、関係者間でWHATの合意形成をしっかり行うことを心掛けて、問題解決に取り組んでいきます。

デザイン思考入門

量から質へ!アイディア革新の軌跡

なぜ量が質を生む? 今週は、アイディア出しと収束のプロセスについて多角的に学びました。scamper法、kj法、ブレーンストーミング、シナリオ法、ペーパープロトタイピングなど、さまざまな手法がある中で、とにかく量を揃えることが質に結びつくという基本原則を再確認しました。また、製品コンセプトの策定にはバリュープロポジションの考え方が重要であり、具体と抽象の往復を繰り返す過程自体が、開発や事業設計に通じる基礎であるとの気付きがありました。 多視点で選ぶ理由は? 実践面では、生成AIを活用した業務サポートに関するブレーンストーミングの際に、様々な視点からの可能性を踏まえた議論に努めました。scamper法やオズボーンのチェックリストに基づく複数のチェックポイントや質問をすべて網羅するのは難しかったものの、議論を重ねる中で、費用対効果や実現可能性など、判断基準の多角的な整理ができたと感じています。意見を収束させる過程で、再度アンケートを実施することで前向きな意見が多いことが確認でき、説得力のある選択を導き出すことにつながりました。 なぜ視覚化が不可欠? さらに、アイディアをただ出すだけでなく、それを整理し視覚化することの重要性を実感しました。物理的な集まりはできなかったものの、図解したスケジュールやアイディア共有、問題点の明確化を通じてチーム内の意思統一が進み、納得感のあるプロジェクト推進が可能になりました。この方法は、組織内の調整や他の業務にも応用できると感じ、今後も「拡張と収束」を意識して取り組んでいきたいと思います。 具体化のプロセスは? 最終的に、具体的なコンセプトに落とし込むには、拡張と収束、具体と抽象のプロセスを繰り返しながらブラッシュアップすることが不可欠だと確認しました。その時々の状況や課題を見直しながら、「正解に近い」答えを模索する作業は、得られた情報を柔軟に適用するリサーチのアプローチと似ていると感じました。今後もこの手法を意識して、問題解決に取り組んでいきたいと思います。

クリティカルシンキング入門

問いの力で生産性アップと新ビジネスアイデア創出

問いの形にする重要性とは? イシュー特定のためのポイントとして、「問いの形にする」ことの重要性を具体例を交えて理解することができた。自身の業務で問題解決や新たな取り組みに向けた課題設定の場面で考えが滞るのは、問いの形にできていない場合が多いと感じた。問いの形にすることで具体的に考えることができ、仮説が導き出せる。この仮説を検証し、その結果を評価・解析することで、PDCAを確実に回すことができるようになる。 ピラミッドストラクチャーの活用法は? また、ピラミッドストラクチャーを用いた論理構成の組み立て方や、「SO WHAT」「WHY SO」の視点で自身の論理構成をチェックする方法を型として理解できた。これにより、これまで何となくやっていた内容を整理し、他者への説明や資料作成の場面で仕事の生産性を向上させることができると感じた。 フレームワーク活用で何が変わる? さらに、新たなビジネスアイデアを考える際には、これまで活用してきたフレームワーク(P.E.S.T、3C、5フォースなど)から導出した事実や結論をビジネスアイデアの論拠として説明するため、ピラミッドストラクチャーを用いて論理を構成する。それをもとに、「MECEになっているか」や「さらに考える余地はないか」などを検討し、結論―根拠―それを支える事実という構成で相手に伝わる資料・話し方を組み立てる。 イシューの適切性をどう確認する? 表出している問題の解決や新たなことを考える際の課題設定の各場面においては、常に「今解くべき問いは合っているか」を自問する。また、適切でないイシューから出したアウトプットは、報告を受ける相手にとって価値のないものであることを肝に銘じる。 部下と共にイシューを磨くには? 最後に、自身のイシュー設定力を向上させるために、部下との対話の中で相手が「イシューを捉えているか」を確認する。捉えられていない場合には、全体課題の中のどの部分を捉えて話しているのかを常に考え、自身として考える機会を増やすよう心掛ける。

クリティカルシンキング入門

数字の力を引き出す分析の秘訣

データ分析の重要性とは? データに基づいて原因を突き詰めていく際、数値を分解しグラフなどに視覚化することで、傾向が見えてくることがあります。さらに、その数値を分解していくことで、他者に説明する資料としても、表よりもグラフの方が一目瞭然です。 効果的な分解方法を探る 分解の方法としては、"いつ(when)"、"誰が(who)"、"どのように(how)"などがあります。博物館のワークでは外的要因に注目しましたが、そのものの数値自体も分解することが大切です。 発見を得るための試行錯誤が不可欠 切り口や切り方を変えて、いろいろ試してみると違った発見があるかもしれません。キリの良い数字でまとめるのではなく細かく刻むことで、見えてくることがあります。また、段階的に切り口を広げて掘り下げていくことで、新たな発見ができることもあります。様々なアプローチを用いて分析をする結果、データに説得力が生まれます。 分析のプロセスから何を学ぶか? 分析を進める中で、切り口や刻み方によって何も見えてこないこともありますが、それもまた意味のある結果だと言えます。このように色々な方法を試すことが重要です。 実際のデータで見る数字の力 私はあまり数字を扱う業務はありませんが、数字を分析することで見えてくるものがあります。例えば、製品群ごとの売上金額や粗利金額の月別、前年比の比較、契約件数と売上金額の関係性、契約金額と粗利益率の関係などを調べることができます。 優先すべき分析視点とは? これらのデータから、売上低調製品の原因や高粗利商品などの理由を探ることができます。月に一度、売上データを集計し分析を行い、そのデータを基にプレゼン資料を作成します。資料作成の際には、ファクターに基づき数字を視覚化することで説得力のある資料を作成します。 営業活動におけるデータ活用 また、自分の営業活動においてもアポイント数や進捗などを視覚化し、得意先や物件ごとの売上金額、粗利金額などをまとめています。

「ポイント × 方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right