クリティカルシンキング入門

グラフデザインで変わる!伝わる資料作り

グラフ選びは正解? グラフの見せ方において、題名や単位などの細かい部分を記載することで、相手にとって見やすくなり、目的に応じたグラフ選びが必要であることが分かりました。また、文字の色やフォントによって印象が大きく変化するので、TPOや内容に合わせたデザインにすることで、相手への読みやすさや伝わりやすさが向上すると感じました。スライドでは、さまざまなグラフを使うよりも、シンプルに一つにまとめる方が、読み手の注意を集中させやすいことが理解できました。 カテゴリ毎の工夫は? 売上などをまとめる際には、カテゴリごとにグラフを活用したいです。データの時系列、経緯、要素がどれに適しているかは、改善したい目的によって変わると思うので、初めはさまざまなグラフを試して、最適なものを見つけたいです。スライドを作成する際は、目的に応じてフォントや色を調整し、強調したい部分が派手になりすぎないよう配慮したいです。 分析で何を掴む? また、売上データのどの部分を確認し、何を分析して改善するべきかを、グラフを使って言葉で説明できるようにしたいです。そのためには、自分自身でデータを分析し、必要な情報を精査していきたいと思います。スライド作成時には、常に相手の視点に立ち、初めて見る人でも分かるように、フォントや文字、グラフを選定していきたいです。特に、どのような印象を与えたいのか、どのような意識を持ってほしいのかを考え、人の心理に働きかけられるように試行錯誤しながら練習していきたいと思います。

クリティカルシンキング入門

データ分析で見える新たな可能性

データ分解の視点とは? 事象をより深く理解するためには、分解が重要です。分解の際は、Who、When、Howなどの視点から試行錯誤が必要です。一つの切り口に固執せず、様々な切り口から数字を確認することが求められます。このとき、切り口は「もれなくダブりなく」を意識しながら進めましょう。 直感に頼らずデータ確認 切り口が見つかったら、それに基づいてデータを直感的に分析します。しかし、直感的な推測は一度疑い、データで確認することが大切です。結果が期待外れであっても、それは失敗ではなく、次のステップへの前進です。 新しい視点で見る方法は? ウェブデータの分析でも、新しい切り口での分析が効果的です。切り口は自動的に決めるのではなく、MECEを意識して分解していきます。ある切り口が有効であっても、他にないかを考え、複数の切り口でデータを分析します。 チームで進める業務の確認 業務においても同様に、チーム全体での作業がもれなくダブりなく行われているか確認します。また、責任範囲を異なる切り口で考えてみると良いです。 マンスリーレポートにどう反映? ウェブデータの分析に関しては、全体を定義した上で新しい切り口をMECEを意識して今週から来週の間に実施し、その結果をマンスリーレポートに反映します。この過程では、全体を把握した上でチームメンバーと議論し、より良い切り口を探してみましょう。 なお、チームの業務に関しては、まずは思考実験を行うことから始めてみてください。

戦略思考入門

戦略思考で切り拓く未来への一歩

長期視点って大事? 戦略思考は短期的な成果だけでなく、長期的な視点に立って計画や行動を進めることで、持続可能なビジネス成長を実現するための重要な要素であると学びました。限られたリソースである時間や人材を最もインパクトの高い活動に集中させるために、フレームワークを活用して幅広い視野を持つことの大切さも実感しています。今後は、内部の戦略だけにとどまらず、外部の市場や競争環境の変化をいち早く察知し、柔軟に対応できる力を身につけたいと考えています。 どう戦略を磨く? 現在、営業企画として業務に従事しており、ターゲットの洗い出し、データ分析、プロジェクト計画の策定といったさまざまな場面で戦略思考の必要性を感じています。今後は、アウトプット作成に際して常に戦略的な視点が反映されているかを確認する習慣を確立し、より質の高い企画立案に努めたいと思います。 未来をどう描く? まずは、本講座の復習や読書を通して知識をさらに深めることを第一歩とし、次のステップとして自社業務におけるシナリオプランニングに取り組みたいと考えています。複数の異なる市場シナリオを設定し、それぞれに対する営業戦略を検討するとともに、データ分析ツールを活用して顧客データや販売データから有用なインサイトを抽出し、戦略の根拠をしっかりと定めたいです。また、メンターや同僚とのディスカッションを通じたフィードバックを取り入れ、PDCAサイクルをしっかり回していくことで、より実践的な戦略思考を養っていく所存です。

データ・アナリティクス入門

仮説とデータが照らす成功の道

データ収集の手法は何? まず、データの収集方法について整理します。既存のデータを確認する場合は、手持ちの情報や一般に公開されているデータ、あるいはパートナー企業が保有しているデータを活用します。一方で、新たにデータを集める手段としては、アンケート調査やインタビューが挙げられます。特にインタビューは、背景を丁寧に確認できる反面、拘束時間や費用がかかる点に注意が必要です。 仮説設定はどう考える? 次に、仮説について考えます。仮説とは、ある論点に対して立てる仮の答えや、まだ明確でない事項についての一時的な見解を指します。たとえば、ある事業の成功は難しいとする結論の仮説と、具体的な問題点を洗い出して解決策を検討する問題解決の仮説があります。結論の仮説は、計画やプロジェクトを始める際に初めに立て、それが思うように進まなかった場合に問題解決の仮説を用いることで軌道修正を行います。 仮説検証はどのように? また、仮説は検証マインドの向上や説得力を強める上で重要です。日常的に市場や競合などの状況証拠を集め、論理的に分析することで、より精度の高い仮説が立てられます。こうしたプロセスは、計画のスピードアップや行動の精度向上にも寄与します。 情報の言語化はなぜ大切? 最後に、普段から問題意識を持って状況を把握し、得た情報を具体的かつ明瞭に言語化することが大切です。興味を持った点にアンテナを張り、現象の背景を分析する習慣は、論理的な思考力とコミュニケーション能力の向上に役立ちます。

データ・アナリティクス入門

「データ分析でつかんだ達成感」

問題解決のアプローチは? 問題に対応する際には、まず何を明らかにしたいのかをしっかりと理解することが重要です。結論のイメージを持ちながら取り組むことで、ストーリーが明確になります。 データ分析の重要な視点とは? データを分析する際には、実数と比率の両方を確認しましょう。これは、母数の違いによって見え方が大きく変わるためです。また、効果的なグラフを用いることで、分析結果を直感的に理解しやすくすることができます。事象に応じて最適なグラフの表現方法を選びましょう。 考えを整理するコツは? 課題に取り掛かる際には、問題点を整理しましょう。考えたことや思い浮かんだことをメモし、それをグループ化して整理します。必要に応じて一旦立ち止まり、考えを再度整理することも大切です。優先順位を決め、効率的に進めていきましょう。 Copilotを活用する方法とは? また、Copilotと相談しながら思考を整理するのも有効です。特に難しい問題に直面した際には、飛躍した考えやアイデアを得る手助けになります。 クリティカルシンキングをどう磨く? 比較資料についても、実践を重ねながらベストな可視化方法を見つけていくことが求められます。クリティカルシンキングを意識し、しっかりと身につけることが成功への鍵となります。 AIを使って新しい視点を得るには? AIを活用することも一つの手段です。AIで壁打ちをすることで新しい視点を得たり、考えの整理が進んだりするでしょう。

データ・アナリティクス入門

問題解決の視点で成長する方法

何が最優先? 問題解決の考え方では、まず最も重要な問題を特定することが大切です。「何が問題か?」という視点から始め、数値を比較して問題の所在にあたりをつけます。また、理想の計画と現状の未達成状況を把握し、そのギャップを埋める方法を検討します。数値の比較では、見る必要のない範囲を見極めて効率的に分析を進めることも重要です。 現状はどう捉える? 現状把握の際には、問題をさらに深掘りするための切り口を考え、その仮説や優先順位をつけていきます。この過程では定性的な情報も取り入れることが重要です。特に、数値に頼りがちな初期の分析では、仮説の形成において定性的な情報を活用することが印象的でした。 分解して見える? ロジックツリーの層別や変数の分解を用いて課題に取り組むと、目標達成のための具体的な施策が見えてきます。たとえば、採用施設数や売上の向上、コストカットといった課題に対処する際は、変数分解の考え方が役立ちます。また、メーカー推奨品の効果を確認する際には、計画と実績を数値で評価し、感覚的な良し悪しに頼らず客観的に判断することが求められます。 分析の工夫は? 分析を進める際には、「見なくてもよい範囲・数字・切り口」を適切に除外することで、効果的な分析が可能になります。データの切り口についても、何が効果的か考え、必要であれば追加のデータ取得を検討します。また、チームメンバーとアイデアを共有し、他に異なる切り口の可能性がないかを確認することも重要なプロセスです。

クリティカルシンキング入門

数字の背後にある真実を解き明かす方法

数字の背後に何を見いだす? 数字を見る際には、単なる数値を追うのではなく、その背後にどのような事実を見いだしたいかを考え、仮説を立てて分析することが重要です。データを収集する際には、手元にある情報だけでは偏りが出る可能性を念頭に置き、多様な視点から情報を捉えることを心掛けるべきです。 データ分解の鍵は? データを分解する際には、「いつ」「誰が」「どのように」という観点を含め、網羅的に考えることが必要です。そして、本当にその推論が正しいのか、さらなる傾向を2、3考えてみることも重要です。分解して何も見つからなくても、それは失敗ではありません。切り口が不明確な場合は、まず分解を試み、それでわからなかったら特定の傾向がないことを確認することが意味を持ちます。 売上増減の要因は? 売上の増減を分析するときは、顧客や商品ごとに要因を探り、傾向を把握して未来の施策に活かします。過去の傾向に従うだけでなく、今あるデータを新たな視点から見直し、「本当にそうか?」と常に疑問を持ちながら進めることが求められます。 他組織の施策も見直してみますか? 自組織の施策と売上推移を振り返る際には、数値をグラフ化して新たな観点がないかを再考します。他組織の施策や売上推移についても、提示されている視点のみに依存せず、仮説をもって直接問いかけ、新たな傾向を探ります。うまくいっていない事例がある場合は、その要因をチームメンバーとともに分解の視点で考察し、どのように対処すべきかを話し合います。

データ・アナリティクス入門

代表値で解く!データ発見の旅

代表値の魅力とは? 今回の学習では、従来の平均値だけでなく、加重平均、幾何平均、中央値といった代表値の種類について新たな知見を得ることができました。それぞれの概念を学ぶことで、データ分析の基本的な考え方を再確認する良い機会となりました。 グラフ選定のポイントは? また、グラフの選び方についても、これまで感覚的に選んでいたグラフの代わりに、何を伝えたいのかという結論を明確にした上で選定する重要性を学びました。これにより、視覚的にデータを効果的に伝える方法を理解できるようになりました。 データ読み取りの工夫は? さらに、データの読み取りにおいても、これまで直感に頼って見ていた部分を見直し、特徴的な箇所に注目するという具体的な指標を取り入れる点が印象に残りました。より重点的に情報を把握する手法を学べたことは、今後の業務に大いに役立つと感じています。 Web分析の疑問点は? 業務面では、Web分析の中で代表値の使用機会が少なかったため、なぜ使用しないのか疑問が生じました。具体的には、1ユーザーあたりの平均ページビュー数や訪問時間帯の最頻値の取り扱いについて、今後の必要性を再考するきっかけとなりました。 数値羅列の問題点は? 最後に、CSVで抽出される数値の羅列では異常値に気づきにくいという実務上の課題も再認識しました。毎日管理しているデータを視覚化することで、より直感的に異常値や問題点を把握し、効果的な分析につなげたいと考えています。

クリティカルシンキング入門

ひと手間でひらく真実の扉

数字から何が見える? 数字で示されたデータには、どのような情報が含まれているのかを考察する中で、ひと手間加えて加工したり、切り口を工夫することの大切さを再確認しました。分け方は必ずしも均等である必要はなく、例えば18歳以下、19~22歳、23歳以上という区切りにより、隠れた特徴や傾向が見えてくるという考え方は非常に参考になりました。 具体と抽象はどんな関係? また、時間・人・手段といった観点から切り口を考えるとともに、MECEの視点を併用して具体と抽象の行き来ができるようになると、得られる知見が豊かになっていくことを実感しました。この手法を習得するには、実際に手を動かして試行錯誤するしかないと痛感しています。 企画資料はどう見える? さらに、この方法は企画実現の根拠資料作りにおいても非常に役立つと考えています。プラットフォーム企画が関係部門の承諾を得られずに停滞している現状に対して、ヒト・モノ・カネ・情報をMECEの視点で見える化することで、各部門の懸念を払拭し、説得力のある資料作成を目指したいと思います。 新たな販促策は? 加えて、他部門のプラットフォームの問題点を把握する際は、入手可能な範囲で登録者数やその内訳データを加工・確認し、そこから新たな販促手法を予想することが必要です。過去のチラシ反響を、時期や時間帯、年齢層、問い合わせ手段、地域などの切り口で整理・データ化することで、顧客の動きをより正確に読み取る検討が進むと考えています。

データ・アナリティクス入門

仮説で紡ぐデータの物語

分析で何が分かる? 本日の講義では、「分析とデータの関係」「データの種類」「データ分析で大切なプロセス」という3点を新たに学びました。分析目的を明確に設定し、仮説を立てた上で様々なデータを検証することが非常に重要だと感じました。目的が曖昧なままだと、分析ニーズに対し誤った結論を導く懸念があるため、職場だけでなく人間関係や恋愛の場面でも同じ考えが当てはまると思います。 受講生はどう感じる? また、講義中には他の受講生の方々から、データを分析する理由や扱うデータの種類について意見を伺う機会がありました。その中で、各々の環境や状況によって分析の目的や手段が異なるという点を実感し、本来の分析の定義を再確認できたのが印象的でした。今後は、職場の仲間にも本日学んだ内容を的確に伝えられるよう努めたいと思います。 なぜ分析重視? さらに、受講生全員が各自の理由でデータ分析を必要としているという共通点に気づき、非常に心強く感じました。今回学んだプロセスを活かし、今後のBI分析やデータの可視化作業に取り組む際には、まず分析目的と仮説を明確にすることを心がけたいと考えています。 部署連携の意義は? また、各部署とのヒアリングやニーズ調査を通して、求められる情報分析と可視化を準備することも重要だと感じました。私自身、新たな職場での取り組みとして、近々導入予定のシステムを活用するために、まずはデータの整理と分析方法についてしっかりと学び、理解を深める必要があると実感しています。

データ・アナリティクス入門

心に響く受講生のリアル声

分析の流れは? 分析とは、情報を分類し整理して、比較対象や基準を設ける作業です。データには種類があり、それぞれに適した表現方法を選ぶことで、どのように加工し見せるかが重要となります。また、分析のプロセスは、まず目的を明確にし、次に目的に沿ったデータや項目を選び、その上で実際にデータ分析を行い、最後に結論やまとめを導く、という流れが求められます。特に目的の明確化、データ・項目の選定、そして結論づけが重要です。 原価推移は分かる? 現在、立ち上げ中の製品原価推移を毎月報告し、現状を集計して前回との比較を行い変化点を確認しています。この報告は現状把握を目的としているものの、集計データから見える原価と、量産化後に実際に把握される実原価との間には差異が存在します。 差異の原因は? そのため、この差異を低減するために、必要な情報が何かを検討し、データ収集と分析を実施することが求められます。どこに差異が発生しているのかを把握し、解決のための打ち手を提案することが目的です。 どのデータを選ぶ? 比較に用いるデータとしてどの項目を選定するか考えると、多くの情報が存在するため、どこから手をつければよいのか迷うこともあります。まずは、既に把握している情報から仮説を立て、検証を進めるのが良いでしょう。その際、データをどのように加工し分析につなげるかに注意する必要があります。特に実原価を正確に把握するためには、人、物、時間といった要素が流動的である点に注意が必要です。

データ・アナリティクス入門

分析で開く意思決定の未来

仮説検証の視覚化は? ライブ授業では、これまで学んできた課題の特定方法や仮説の設定、結果の検証といったプロセスを再確認することができました。特に、仮説検証の成果をどのように可視化するかについては、参加者の意見を聞く中で、棒グラフや円グラフ以外にも表現方法が存在することを知り、新たな視点を得ることができました。また、限られた分析時間の中で、本当に必要な分析を見極めることの重要性を改めて実感しました。データが手元にあると分析したくなりますが、何のために分析するのか、得られた結果をどう活用するのかを常に念頭に置いて進めるべきだと感じました。 分析目的と改善は? 講座を受講する前にデータ分析を学ぶ目的は「意思決定に活用するため」であり、その目的は6週間の学びを経ても変わっていません。授業内ではマーケティングに関する事例も取り上げられましたが、現業務において活かす機会は少ないと感じます。一方で、A/Bテストや4P分析は業務改善のための改善案策定に、また相関分析は将来の経費推計に役立つと考えています。 何かを決定する際は、まずデータ分析で解決可能かどうかを検討しています。その際、何のために分析を行うのか、何を明確にするのかを設定し、ただ単にエクセルでグラフを作成するのではなく、その手法が最適かどうかを熟慮することを習慣にしています。また、年1回の定例報告の場合、長年変わっていない報告形式も多いですが、可能な範囲でより伝わりやすい形式に改善していくことが重要だと感じています。

「確認 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right