クリティカルシンキング入門

ナノ単科が開く挑戦の扉

どのグラフを選ぶ? データを視覚化して情報を分かりやすく伝える際は、テーマに合ったグラフを選ぶことが大切です。時系列の変化を示す場合は左から古い順に配置された縦棒グラフ、要素ごとの伸びや量を表す際には横棒グラフ、割合を示す場合は円グラフや帯グラフ、変遷を伝えるときは折れ線グラフを使うと効果的です。間違ったグラフを選んでしまうと、本来伝えたいメッセージが正しく伝わらなくなるため注意が必要です。 フォントで印象作る? また、文字のフォント、大きさ、色などは、受け手に与える印象を大きく左右します。強調したいメッセージに対しては、これらの要素をうまく活用することで、より伝わりやすくなります。反対に、注意事項を伝えたいにもかかわらず、小さいフォントや細字、目立たない色使いをすると、伝えたい内容がうまく伝わらない可能性があります。 視覚配置はどう? スライドを作成する際は、リードメッセージと、それに続くグラフや表、アイコンなどのビジュアル要素が一体となっているか確認することが重要です。リード文とグラフの配置にずれがなく、アイコンや色彩が伝えたいポイントを適切に表現しているか、しっかりチェックしましょう。 情報整理はできる? クライアントに提示するドキュメンテーションの場合、リード文やボディに情報が散乱しすぎたり、何を伝えたいのかが不明瞭になったりしないよう注意が必要です。社内資料やクライアントから受領した資料を使う際には、メッセージとグラフ、表にズレや矛盾点がないか、十分に確認することが求められます。よく確認し、擦り合わせを怠らないことで、論点がブレたり、ゴールが不明確になったりする事態を防げます。 図表の確認は? さらに、グラフや表にする際は、タイトルや単位など必要な情報が欠けていないか、常に注意深くチェックしてください。伝えたいことや論点を整理し、日本語の文章に落とし込むことで、より分かりやすく伝えることが可能になります。色やフォント、図表の配置が相手の理解を助ける順序になっているか、また、自分が話しやすい構成になっているかを意識しましょう。 資料の見直しは? 最後に、日々目にする膨大な資料やデータを読む際、矛盾点や分かりにくい点が見つかった場合は、作成者に確認することを心がけ、情報のずれが生じないよう対策を講じることが大切です。

データ・アナリティクス入門

データで掴む!プロダクト成長の鍵

定量分析の重要性は? 目的を明確に持つことや分析が本質的に比較であることを改めて理解し、以下の観点で新たな気づきを得ました。まず、定量分析の重要性です。適切な比較を行うためには、目の前の事象やデータだけでなく、「Aがない場合」といった事象の背景も考慮に入れ、比較対象を慎重に選定する必要があります。また、仮説を立てることで分析の精度を上げることができると感じました。 アプリ戦略と仮説の関係 現在、私はアプリのプロダクトマネージャーとして、プロダクト企画や戦略立案を担当しています。また、自社事業でアプリやプロダクトを使って事業成長戦略を描くというミッションを追っています。市場データや競合比較、ユーザーの売上データ等を用いて仮説を立て、精度の高い分析を目指しています。この手法は仮説の精度を向上させるための手段となり得ると思います。 ユーザーのペインとは? 分析が役立つと考えられる場面は以下の通りです。まず、ユーザーのペインがどのような数字に表れているかについてです。特に、弊社のヘルスケアアプリにおいて、ユーザー記録データの推移と一般的な健康データを比較し、特定のセグメントにおけるペインを特定できる可能性があります。また、国内外の市場比較から次世代市場の動きや外資企業の動向予測が可能になるとも考えています。 市場分析に必要なステップ 市場分析においては、目的の言語化が重要です。市場分析は主に「自社プロダクトの市場成長性と方向性決定のため」「自社事業成長戦略のポジショニング決定のため」の二つの観点を想定しています。目的ごとに仮説を立て、分析軸を決めることが必要です。具体的には分析目的をMECEで言語化し、優先順位を付けて最上位から着手します。何をどのように比較するか、仮説が本質的な目的から外れていないかを確認し、ゴールまでの計画を立てます。 データ分析で見える強みと弱み 自社プロダクトの分析には、「あるべき姿」と現状のギャップを言語化し、そのプロセスとしてデータ分析を活用します。市場ポジションの分析では、自社プロダクトの利用状況推移と同セグメントのアプリの一般的な状況を比較し、強みや弱みを特定します。また、ユーザーのペインを見つけるためにデータ分析を行い、アンケート結果やユーザーインタビュー結果を再評価し、インサイトを見出します。

データ・アナリティクス入門

キャンペーン成功の秘密、数字から

施策の視点は何? まず、Product、Price、Place、Promotionの4つの視点で施策を考察することで、学生における時間帯、価格、訴求チャネルのミスマッチという論点が整理しやすくなります。この手法は、自部門での施策レビューでも有効に活用されています。 広告評価はどう? 次に、広告メディアの選定では、「費用 ÷ 表示回数」という単純な指標を用いて、CPM換算で最適な媒体を選びました。これにより、感覚ではなくデータに基づいて判断する重要性を再確認することができました。 離脱原因は何? また、SNS広告管理画面の年齢属性データやUTM付きの流入計測、学内アンケートなど複数の手法を組み合わせることで、認知から興味、そして来校までの各段階で、どのタイミングで学生が離脱しているのかを具体的に特定できる仕組みが整えられています。 各要素のギャップは? 新規キャンペーンを企画する際には、Product(訴求内容)、Price(学割の有無)、Place(曜日・時間帯)、Promotion(SNSや学内媒体)の4象限マトリクスを必ず作成し、意思決定会議で各要素間のギャップを洗い出すルーチンを実施しています。 ファネルの進捗は? さらに、UTMパラメータを用いて大学生セグメントの流入を追跡し、表示、クリック、資料請求、来校の各ファネル段階での歩留まりを計測しています。歩留まりが低い段階に絞ってクリエイティブのABテストを回すことで、改善に必要なリソースを効率的に投入しています。 損益突破の条件は? また、価格施策においては、固定費と変動費の合計を目標生徒数で割るという式を参考に、学割導入によって必要な生徒数がどれだけ増加すれば損益分岐点を超えるかをシミュレーションしました。テスト導入後は、割引適用者のライフタイムバリュー(LTV)を計測し、キャンペーンの継続を判断しています。 スケジュールは如何? 施策の実施スケジュールとしては、初月にKPI分布の可視化テンプレート構築、2月目に要因分解ダッシュボードとアラート実装、3月目に大学生向けSNS広告のABテスト、4月目に学割と夜間枠の検証、5月目に成果共有会を開催し、6月目に効果を総括して次期OKRを設定するという計画です。これら全てを半年以内で実施する予定です。

データ・アナリティクス入門

データ分析で解決策を見つける旅

問題解決とデータ分析の関連性とは? 今週の学習を通じて、問題解決のプロセスとデータ分析の関連性について学ぶことができました。特に印象に残ったポイントは、問題解決のステップを「What(現状把握)」、「Where(問題特定)」、「Why(原因究明)」、「How(対策検討)」という形で整理するアプローチです。このステップを行き来しながら問題を深掘りしていく方法は、データ分析で何から取り組んで良いかわからない時に役立つ道筋を示してくれるため、非常に効果的だと感じました。 STARフレームワークの有効性は? 現状把握においては、問題を「あるべき姿」と「現状」のギャップと捉えることが重要です。このギャップを、STAR(Situation:状況、Target:あるべき姿、Action:行動、Result:結果)フレームワークを活用することで、より具体的に問題解決のプロセスをイメージしやすくなります。また、問題を因数分解することで、要素を細分化し問題のある箇所を特定でき、優先的に対応すべきところが明確になります。逆に、不要な範囲を明確にすることで、効率的に問題解決に繋がることも新たな発見でした。 ロジックツリーとMECEの効果は? 問題の因数分解にはロジックツリーが効果的で、層別分解や変数分解(掛け算)の2種類を問題に応じて使い分けることで、より効果的に分析が行えます。MECEの概念も重要で、「抜け漏れ、ダブりなく」問題を捉えることが重要です。 データ分析の具体的な活用例は? 今後、学んだ内容は患者の受診動向調査に活用できると考えています。どのような患者が、どの診療科をどのくらいの頻度で受診しているのかを分析することで、患者のニーズや医療機関の利用状況を把握できます。ただし、実際に活用するためには、現在のデータが分析に必要な要素を網羅しているかを確認する必要があります。 分析の目的は何か? データ分析の目的は、大きく分けて二つです。まず一つ目は患者サービスの向上で、ニーズに合った医療サービスを提供するために分析結果を役立てます。二つ目は病院経営の改善や効率化で、患者の利用状況を分析することで、リソースの最適化が図れます。さらに、定量分析だけでなく定性分析を利用することで、サービス提供時の運用上の問題を解決する可能性もあります。

クリティカルシンキング入門

相手に伝わる視覚化の極意

伝えたいことは? 今回のテーマは「相手の理解を促進させる視覚化」でしたが、まず大切なのは、相手に何を伝えたいのかを明確に決めることだと感じました。視覚化する上で使える手法には、グラフや文字、スライドなどがありますが、できるだけシンプルにしながらも最大限のメッセージを伝える工夫が必要だと思いました。具体的な学びは以下の通りです。 グラフはどう使う? まず、グラフについてです。時系列データには折れ線グラフや縦棒グラフ、データ量の比較には横棒グラフなど、それぞれの特徴を活用することが重要です。 文字はどう工夫? 次に、文字についてです。自分はカラフルになりがちですが、強調したい文言が過剰にならないよう注意したいです。また、使う色の中身も意識しながら差別化を図ることが大切です。 スライドで誘導は? 最後に、スライドについてです。メッセージの順番は左から右、上から下に配置し、強調したい箇所には矢印を入れて視点を誘導する工夫が効果的です。 学びはどこに? 学んだことは、主に次の2つの場面で活用できると思います。 研修資料の工夫は? まず、社内研修設計におけるスライド作成です。現在、マネージャー候補向けの研修設計を考えており、スライドを作成する必要があります。研修の難易度が上がり多くの資料を収集する分、スライドはできるだけシンプルにする工夫をしたいと考えています。 提案資料はどうする? 次に、経営陣に提案する人事資料作成です。現在、週に1~2回、経営陣に人材戦略に関する提案をしています。その際に資料についていくつか質問を受けることがあるので、資料を一目で理解できるよう改善していきたいと思います。 行動計画は何だろう? これらを活用するための行動計画は以下の通りです。 研修計画のポイント? 社内研修設計におけるスライド作成では、情報の順番とメッセージの順番を一致させ、グラフを取り入れる際にはできるだけ一つにまとめ、フォントのカラーを意識的に差別化することを考えています。 資料改善の注意点は? 経営陣に提案する人事資料作成では、基本的なことですが、グラフにタイトルを必ずつけ、適切なグラフかどうかを常に確認し、データが時系列なのか、要素なのか、変化を表現したいのかを考慮することが重要です。

データ・アナリティクス入門

データ活用で未来を切り拓く鍵

目的を明確にする重要性は? 目的を明確にすることと、正しい比較を行うことは非常に重要です。動画の例では、提示された数字をそのまま信じてしまう場面がありましたが、実際のビジネスシーンでも同様の例は多いと感じます。そもそも、その数字は何のために存在するのか?どのような基準で比較しているのか?比較の手法や数字の計算、抽出方法は正しいのか?データの精度や信頼性も重要です。AIの助言を受けて、身近な実例として新聞のチラシやテレビショッピングに出る数字を見て、何を示しているのか粘り強く理解していきたいと思います。例えば、「当社比」とは一体何を指しているのか?私の両親もそのまま鵜呑みにしているようなので、注意したいところです。 戦略経理とは何か? 経理に関しては、記帳や財務諸表作成がAIや外注で可能になると考えています。ただ、仕訳を行い記帳している際に「不思議だ」と思う点があり、そこを深堀りすることで経費や売上を分析し、会社全体が利用できるデータにすることができるのではないかと考えています。「戦略総務」や「戦略人事」という言葉を聞いたことがありますが、「戦略経理」という考え方もあって良いのではないかと感じます。 データ・ドリブン経営をどう進める? 意思決定にはデータの利用が不可欠です。データ・ドリブン経営という言葉が以前からありますが、そもそもデータに基づかない経営が存在するかという疑問が湧きました。実際の現場では感覚や感情に基づく経営が主流でしたが、私が関与する場面ではデータに基づいた意思決定を推進していきたいです。 仕事の目的を再確認する重要性 業務全般において、目的を明確にすることが重要です。これまでの仕事の中で、議事録作成などの業務において何のために行うのかという明確な目的がなかったため、非効率的となっていました。しかし、目的を明確にすることで効率的に正しい結果を得られるようになることを意識したいと思います。 転職活動で心掛けることは? 現在、転職活動中で新しい職場を探している中、今後の行動指針として、意思決定に際しては必ず数字の裏付けを吟味すること、目的の明確化を徹底することを心掛けたいです。また、以前に読んだ本や少しかじった統計検定の内容と重なるところが多いことから、統計学を一度学び直したいと考えています。

データ・アナリティクス入門

数字が語る!原因分析のコツ

原因分析のポイントは? 「why:原因を分析」という問題解決のステップについて学び、実際の業務に活用するためのヒントを得ることができました。原因分析では、問題がなぜ発生したのかデータを基に追及し、原因が特定できた後に解決策を検討するという流れを確認しました。 プロセス分解の極意は? この授業で得た学びは主に2点あります。まずは、データをプロセスに分けて考える方法です。課題では、ウェブサイトの広告表示から体験レッスンへの申込に至る一連のプロセス(広告表示→広告クリック→申込)の各段階のデータを比較し、同じ経路を辿った中でどこで数値が落ちているかを検証しました。比較する際は、各プロセスの分母が異なるため、率で示す点が重要です。率が低いプロセスに問題があると考え、具体的な原因を探る有効な手法だと実感しました。この方法により、どこから改善に取り組めばよいのかが明確になり、必要なデータの選定も容易になると感じました。 原因思考の広がりは? 次に、原因を考える際は思考の幅を広げる必要があると学びました。フレームワークの一つとして、対概念という視点を活用する方法があります。たとえば、「自社の戦略に原因がある」と「自社の戦略以外の要素に問題がある」という二つの視点から原因を考えることで、一方向への固執を避けることができます。この手法は、原因の決め打ちを防止するのに非常に有効だと感じました。 遅延の要因は? 実際の業務で、業務の遅れが他部署に影響を与えている場合、まずはその業務を複数のプロセスに分解し、どの段階でボトルネックが発生しているのか、数字を元に比較することが有効だと考えます。原因追求においては、MECEの考え方も必要不可欠です。さらに、原因に関わる要素が明らかになったら、それ以外の可能性も併せて検討することで、一面的な見方に陥らずに対策を練ることができると実感しました。 学びをどう今後活かす? この学びからは、事象には必ずプロセスが存在し、分解して比較することで原因を特定できること、そしてよい事例についてもプロセスの整理が応用可能であることを改めて確認しました。今後は、問題だけでなく成功事例にもプロセスの視点からアプローチし、より幅広い視野で原因と対策を考えられるよう努めていきたいと思います。

データ・アナリティクス入門

ビジネスフレームワークで仮説を確かめる方法を学ぶ

効果的な仮説の立て方は? 今回は、「Why(原因の分析)」について学びました。このステップでも「What」「Where」同様に、複数の切り口を持ち、複数の仮説を立てることが重要だと実感しました。特に、切り口の感度の良さや仮説の筋の良さが問題解決の精度に大きな影響を及ぼすことを改めて痛感しました。高い視座と広い視野を持ち、ビジネスフレームワークを活用して大局的かつ網羅的に複数の仮説を立てることが有効だと学びました。 具体と抽象の使い分け方は? また、仮説の分類として「問題解決の仮説」と「結論の仮説」があり、前者は具体化、後者は抽象化が肝要です。具体と抽象を使い分けて行き来できるように練習することが必要だと改めて感じました。 データ検証のプロセスの重要性は? そして、仮説は検証して初めて意味を持ちます。データを収集し(既存データに不足があれば新たにデータを集め)、指標を定め、その指標で比較できるように適宜データを加工し、段階的に仮説を絞り込み検証を繰り返すプロセスが重要であると学びました。 ツールを活用するために何が必要か? ツールがあることは助かりますが、使いこなせなければ意味がありません。仮説設定やデータ収集・結果の比較を通して「経験や勘による決め打ちや意図的な絞り込み」という負の側面が出ないように、正しいプロセスを意識し、目的に適したツールを正しく使いこなせるように練習を繰り返したいと考えています。 次期事業計画の策定にどう活かす? 次期中期事業計画の策定時には、このプロセスを活用します。「なぜ今ターゲット顧客から選ばれているのか」を深堀りし、仮説を設定してその再現性と競争優位の持続可能性を検証したいと思います。どのビジネスフレームワークを使って仮説を設定し、どの指標で比較し絞り込むかを考え、一つずつ丁寧に進めていきたいです。 客観性と説得力を保つためには? 『経験や勘で導き出した答えの確からしさを、ビジネスフレームワークを用いて正しいプロセスを踏むことで確認する』という意識を持ちながら、フレームワークの選定や指標の設定、データの収集・比較、仮説の絞り込みなどの過程で、経験や勘による決め打ちや結論ありきの意図的なものにならないよう常に意識し、客観性と説得力を担保するように努力します。

データ・アナリティクス入門

目的設定から始まる分析の旅

分析前に何を考える? 分析を始める前に、目的や仮説を明確に設定することが基本です。その上で初めて実際の分析に着手できます。データの加工については、AIの活用が効果的ですが、なぜそれを行うのか、また結果がどうであるのかという点については、人の意見が重要だと感じています。これまでの業務では、見やすさやわかりやすさに時間をかけすぎ、本質的な問いに対する回答が十分でなかったと実感しています。 定量データの違いは? 定量データには様々な種類があり、平均値を算出することが有意義な場合とそうでない場合とがあります。直感的には理解できるものの、理由を問われると具体的な説明が難しいこともあります。質的なデータか量的なデータかという違いよりも、それぞれの特徴をしっかりと認識しておくことが大切です。 条件比較、何を見る? データの比較を行う際は、本当に同じ条件で比較できているかどうかを確認する癖を身につける必要があります。なぜ複数のデータを比較するのか、比較から何が読み取れるのかを常に考えることが求められます。例えば、既存店舗における業績、顧客属性、サービス満足度のデータを用いる場合、その店舗の改善ポイントや、他店舗で活用できる内容を明らかにすることが重要です。また、将来予測に際しては、既存店舗のデータ分析が正しく目的を果たし、正確な判断につながることが、1年先の店舗運営における仮説や予測の精度向上、そしてリスクヘッジに直結すると考えています。 会議で何を共有? 会議や立ち話などの中で分析に関する話題が上がった際も、まずは紙一枚に目的、期間、どのようなデータが必要か、既存のデータなのか、どの部分から入手可能かをまとめることが大切です。その上で、依頼者と意見をすり合わせながら進めることが効果的です。 定性データは役立つ? また、定性データの活用についても重要な視点です。仮説設定の根拠や課題確認のため、まずは定性データに目を通す機会を十分に設けることが求められます。 AI活用の注意点は? 現時点では、AIの活用は基本的に注意が必要ですが、関係のない自作データなどを用い、どのようなデータの見せ方が効果的かを試行するなど、活用の視点から取り組んでみると良いと感じています。

データ・アナリティクス入門

仮説思考で未来を切り拓く

仮説思考はどう? 今週は、仮説思考の重要性と、仮説を立てる際の具体的なポイントについて学びました。仮説とは、まだ十分に明らかでない論点に対して一時的に答えを設定し、それを行動や検証の出発点とするものです。単なる思いつきではなく、論理的な根拠に基づいた取り組みが求められると実感しました。 複数の仮説は必要? 仮説を立てる際は、一つに絞るのではなく、複数の仮説を用意することが大切です。それぞれが漏れや重複なく、論点を網羅していることが求められます。また、データを収集する際には「誰に」どのように聞くかという視点を持ち、主観や偏りのない情報を得る工夫が必要だと感じました。 仮説の効果は何? 仮説思考の意義は、検証マインドの育成や、発言・提案の説得力の向上、問題に対する関心の深化と主体的な行動、判断や対応のスピードアップ、そして行動の精度向上にあります。これらは、実際の業務に直結する価値ある視点であり、感覚や経験だけに頼らない論理的な思考が、結果として仕事の質を高めると実感しました。 トラブルにどう対応? 特に、現場でトラブルや進捗の遅れが発生した場合には、「なぜこうなっているのか?」という問いかけから複数の仮説を立て、原因を洗い出すことが有効だと感じました。例えば、工程が遅れていると感じた際に「人員が不足しているのではないか」「機器の稼働率が低下しているのではないか」「必要な資材が届いていないのではないか」といった仮説を言語化し、関係者と共有することで問題解決に近づけると考えています。 安全面はどう考える? また、現場で安全面に関する小さなヒヤリハットが発生した場合にも、単なる報告に留めず、「なぜ起きたのか?」という問いを立て、複数の仮説に基づいて現状を確認し、改善策を具体的に考えることが重要です。定例の会議や社内報告においては、結論のみならず、その背景にある「こう考えた理由=仮説」のプロセスを伝えることで、より説得力のある報告や提案が可能になると思います。 どう改善していく? 今後は、現場で何らかの問題に直面した際に、まず論理的に仮説を立て、それをもとに検証し、改善していくという思考の流れを、日々の業務に積極的に取り入れていきたいと考えています。

データ・アナリティクス入門

グラフ活用で成果を高める方法

グラフの読み方は? ■グラフの解釈と仮説の立て方 グラフを用いる際は、まず読み取りたい内容に合わせて最適な形式を選びましょう。グラフを観察する前に予測を立てることで、分析の方向性を明確にします。分析方法には、特徴的な部分を注目したり、複数のデータを比較して差異を見つけるなどのアプローチがあります。この過程で、解釈と仮説を同時に立てると効果的です。 R&Dチームの成果をビジュアル化する際には、チーム別に成果物の数をヒストグラムにし、偏りや詰まりを確認しましょう。この情報を基に各チームへのフィードバックを行い、改善につなげます。 データ表現の工夫は? ■ビジュアル化のヒント データビジュアル化では、代表値や散らばりに着目します。代表値の設定においては、データに応じて使い分けが重要です。 - 単純平均は、データ全体の総和をデータ数で割る方法で一般的に多く用いられます。 - 加重平均は、影響力の異なるデータに重み付けを行って平均を取る方法です。 - 幾何平均は、主に変化率や比率を扱う際に使用されます。 - 中央値は、外れ値に影響されにくいため、データの中心を把握する際に便利です。 さらに、散らばりを把握するためには標準偏差を用います。標準偏差はデータのばらつきを測る指標で、値が大きいほどばらつきも大きいことを示します。大きく逸脱したデータは重要なポイントかもしれないため、注意が必要です。 データが正規分布に近い場合、95%のデータが標準偏差の2倍以内に収まるとされています。この特性を活用して標準偏差を逆算する方法もあります。 最後に、プロジェクト参加者の満足度を測る際には、参加期間に応じた重みづけを行って加重平均を計算し、その結果を適切なグラフで示すことで満足度の傾向をわかりやすく伝えられます。 仮説検証の流れは? ■解釈と仮説の流れ まず、チームごとに成果物を数え、それを表にして視覚化します。次に、そのデータから予測を立て、詳細な解釈を行った上で仮説を形成します。この仮説をチームにフィードバックし、インタビューなどを通じて実態と照らし合わせることで、仮説を検証します。これにより、チームやプロジェクトのさらなる改善へと導くことができます。

クリティカルシンキング入門

新しい視点で自分を見直す方法

思考、どう確認する? 批判的思考力を高めるためには、自分自身の思考をチェックすることが重要だという点が印象的でした。具体的には、次の3つのポイントが挙げられます。まず一つ目は、視点・視座・視野の3つの視点を持つことです。日々の実践としては、人とコミュニケーションを取る際に、自分がどの立ち位置で発言するのかを考えることで活用したいと思います。次に、切り口を多く持ち、具体と抽象を行き来することで頭の使い方を覚えることです。これに関しては、生活の中で目に入る物や人をどのような切り口で分類できるかを考えることで実践していきたいです。そして最後に、誰がどのような目的で何をするのかといった情報から切り口を探すことが挙げられます。具体的には、属性や趣味嗜好、5W2Hを用いて切り口を広げ、抽象と具体を行き来しながら思考したいと考えています。 偏りをどう防ぐ? 自分自身が偏った思考に陥っていないかを確認するためには、チームメイトと話すことで見直しを行いたいです。 どうやって活かす? この3つのポイントを活用できそうな場面としては、以下の点が挙げられます。まず、自社の売上や在庫の変化点分析において、どの要素で変化が起きているかを分析する際に役立つと感じています。そして、課題解決策の提案の際には、切り口を分解し、課題を洗い出すことで効果的な打ち手を検討したいです。さらに、日々の上司や他部門とのコミュニケーションにおいては、相手がどの視座・視点・視野で考えているかを理解した上で会話することで、望む回答を得やすくなると考えています. 行動計画はどうする? 11月に実践する行動計画としては、次の3点があります。まず、販売拠点の在庫管理の課題分析です。ここでは、在庫の増減要因をどの切り口で分けられるかをMECEで分析し、課題を明確にしたいと思います。次に、部内に提出する提案資料の作成です。自身の意見が採用されるように、どの視点・視野・視座でプレゼンすればよいか考え、資料に反映させたいです。最後に、課題の深堀りです。下期に取り組む工場での在庫管理体制の課題と解決策の検討において、最も効率的な打ち手を考えるために、どのデータをどの切り口で分析すればよいか検討したいです。

「確認 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right