データ・アナリティクス入門

ギャップが扉を開く学びの法則

視点はどう捉える? 一つの課題やギャップを分析するための視点を柔軟に探る発想力を身につける必要性を感じています。現状とあるべき姿のギャップを捉える際、「正常な状態」から「ありたい姿」へと変化するプロセスにもこのアプローチが有用であることに気づきました。普段は「あるべき姿」を重視しがちですが、実際には両方向の視点が大切だと実感しています。 分解方法はどう選ぶ? ロジックツリーの分解方法には、層別分解と変数分解の二つがあることを学びました。特に、普段から層別分解は頻繁に実施しているものの、変数分解はあまり意識していなかったため、今後は意識的に取り入れていきたいと考えています。また、意思決定の際には、プレゼントの内容を決めるプロセスに似た実務への応用も模索中です。 解決プロセスはどう進む? 問題解決のプロセスでは、まず「What」から始め、次に「Where」「Why」「How」へと論理的に展開していく流れを、無意識ながらも実践している現状があります。今後はこのプロセスを改めて意識し、より効果的に活用するための訓練を積んでいきたいです。 MECEはどう活かす? MECEの原則については理解しているものの、実際の議論や分析で漏れや重複が生じてしまうことがあります。今後は、無意識のうちに正確に分類できるよう、何度も実践を重ねていく予定です。 計画はどう実現する? また、中長期計画の立案において、現状から「ありたい姿」へ向かうための具体的な発想法を取り入れ、計画策定に生かしていきたいと考えています。新たな取り組みや期初の方針決定の際にもロジックツリーを意思決定の手段として活用し、実績分析の際には変数分解も取り入れて状況を正確に把握できるよう意識していきます。 課題はどう共有する? 最後に、チーム内で現状と課題を検討する際、まずは「What」から問題を明確にし、相手から提示された資料や提言がMECEに基づいているかを確認することにも力を入れていきたいと思います。

マーケティング入門

部下評価の壁を乗り越える試み

課題見極めの秘訣は? マネジメント研修における人事評価プログラムを考える際、我が社のマネージャーがどこに課題や痛みを感じているのかを見極めることが重要です。例えば、部下に低い評価を伝えるという難しい状況に直面したとき、どのような困難があるのかを想像し、現場の声を確認することで、本当に求められている支援の内容を把握する必要があります。 社員の旅はどう進む? 【人事評価プログラムの社員ジャーニー】 まず、プログラムの存在に気づき(認知)、次に、自分が直面する課題を解決できるのではないかという興味や関心を持ちます。続いて、評判の良さや他のプログラムとの比較検討を経て、納得の上で参加し、実際に職場で試すことで効果を実感するという流れが見られます。 真実を探る意味は? 【真のニーズは?】 特に、部下へ低い評価を伝えなければならないというシーンで、マネージャーが抱える心理的な抵抗や恐れに注目することが重要です。こうした現場の実感をヒアリングによって確認し、常に社員目線で物事を考えるアプローチが求められます。 自己内省のヒントは? 【真のニーズを自分の中で深堀する】 たとえば、明確なマニュアルや型があれば安心できるのではないか、評価フィードバックの際に感じる不安や逃れたいという気持ちが、本当の恐れとなっているのではないかと仮説を立てます。また、評価のフィードバックを通じて、マネージャー自身がどのような組織を作りたいのかという視点から、現状の評価方法を再考する必要もあるでしょう。このように、仮説を立てたうえで現場へインタビューを実施し、根源的なニーズやゲインポイントを探るプロセスが欠かせません。 試行錯誤の結末は? いずれにしても、成功と失敗を繰り返しながら、最適な手法を見出すための試行錯誤が重要です。現状、社内で新しい取り組みを生み出すのには時間がかかり、失敗が続くとさらに先行きが不透明になる状況ですが、皆さんの環境ではどのように感じられていますか。

マーケティング入門

売れるための「何を」「誰に」を探る旅

学びの流れをどう掴む? Week.01から始まった学びの流れとして、「何を売るか?」から「誰に売るか?」、そして「どうやって売るか?」という一連の流れを掴むことができました。まずはニーズを正しく捉え、何を売るかを明確にすることが重要です。この際、提供する価値を創造し、競争が可能な市場で「何を売るか」を明らかにすることが求められます。 分析のポイントは? 次に、「何を売るか?」や「誰に売るか?」について、きめ細かく論理的に分析することが必須です。顧客の視点を拾い続け、自らも顧客の立場に立ち続け、ソフトとハード両面で多角的に捉え、活路を見出すことが重要です。さらに、これを高速に回転させることも求められました。 魅せ方で成否が決まる? しかしながら、「何を売るか?」「誰に売るか?」が的確に導かれていても、『魅せ方』次第で提供価値が下がってしまう可能性があります。そのため、細部にわたって取りこぼしなく追求することが重要です。また、「どうしたら売れないか?」といった逆の角度から考えることも必要です。顧客が躊躇する理由や選択しない理由を考察し、イメージできるネーミングや魅せ方を提供することが求められます。 売れない理由を見つけるには? さらに、日常の製品やサービスにおいて「売れない理由」を考える習慣が役立ちます。差別化のワナにも注意を払い、顧客を忘れて競合ばかりを見ることがないよう心掛けることも学びました。 4Pでプロモーションを見直す イノベーションの普及要件やマーケティングミックスの4Pのフレームワークは、これらの気づきを整理するのに非常に有用であると感じました。営業でプロモーションを行う際に、魅せ方と4Pのプロモーションを適切に活用することが可能です。習慣や惰性で行ってしまいがちなプロモーションについて改めて設計し、理にかなっているかを再確認する際に非常に役立つと感じました。こうして学んだことを活かし、具体的な業務提案に適用していく予定です。

戦略思考入門

リソースを集中活用するススメ

リソース配分は正しい? 限られたリソースをどのように効果的に活用するかを考えることの重要性を学びました。すべての顧客に均等にリソースを割くのは非効率であるため、時間当たりの利益貢献度を基に優先順位をつける必要があります。このアプローチにより、成果が期待できない部分のリソースを大胆に削り、重要な顧客に集中することで、組織全体のパフォーマンスを向上させる戦略が明らかになりました。 ROIで判断する? また、ROI(投資対効果)という視点を活かして意思決定を行うことが効果的だと気づきました。各顧客の売上や利益率、時間当たりの利益貢献度を分析し、ROIが高い顧客にリソースを集中させることが望ましいです。さらに、顧客特性に応じて最適なアプローチを取ることで、ROIをさらに向上させることも可能です。たとえば、長期関係のある顧客には信頼を高めるサポートを、新規顧客には競合と差別化する対応が求められます。 業務見直しは必要? 日常業務においても、昔からの慣習に流されずに、その業務が本当に必要なのかを常に問い直すことが大切です。FAXや印鑑など、過去の流れで続けている作業が本当に不可欠か見直す必要があります。また、不要な業務は思い切って削減し、削減で生まれた余裕を付加価値の高い業務に振り分けます。 自動化は進んでる? 自動化についても常に考慮し、人手で行う業務をRPAや自動化ツールで代替できるかを検討します。その結果、実施可能な自動化プロジェクトをリスト化し、効果的な実行を目指します。 業務目的は何? さらに、業務の目的を定期的に問い直すことも重要です。「この業務は何のためにあるのか?」を見据え、目的に合致していない業務がないか確認し続けることが、より効率的な働き方につながると考えます。効率化の意識をチーム全体で共有し、改善案や気づきを他のメンバーと積極的に共有することで、全体としての効率化を支える体制を築いていきます。

データ・アナリティクス入門

掘り下げる力が課題解決を変える

問題解決の流れは? 問題解決のプロセスを整理するために、まずは「問題解決の4ステップ」について学びました。基本の流れは、what(問題の明確化)、where(問題箇所の特定)、why(原因の分析)、how(解決策の立案)という順番です。中でもwhereの部分では、どこに原因があるのかを深く掘り下げ、分析対象の範囲を絞ることで、原因を検証しやすくする点が強調されています。 仮説の立て方は? さらに、原因に対する仮説を立てる際には、複数の仮説を出すことや、異なる切り口(ヒト・モノ・カネなど)から考えることが重要です。これにより、一面的な見方に偏らず、網羅的な分析が可能になります。そして、仮説の検証に向けて、どのようなデータを収集するかを意図的に選定し、意味のある対象から適切な方法で情報を得ることが求められます。 データ収集はどう? また、都合の良いデータだけでなく、比較のための情報収集も欠かさず行うことが必要です。反論を排除するために、仮説に反する情報も踏まえた検討が重要で、これにより説得力のある分析が可能になります。ここでは、フレームワークとして3C(市場、競合、自社)や4P(製品、価格、流通、プロモーション)を活用する方法が示されています。 全体評価は? 総評として、問題解決の4ステップがしっかりと整理され、特にwhereの部分を掘り下げる姿勢が評価されています。今後は学んだ理論を実際のビジネスシーンに応用し、複数の仮説の中から優先順位を明確にする方法を検討することが期待されています。 進捗報告はどう? また、メンバーの進捗報告に際しては、各自がこのプロセスに沿っているか確認することが重要です。仮説が複数たてられているか、異なる視点での切り口が取り入れられているか、さらにはデータ収集が適切に行われているかを、リーダーを中心としたレビューの場でしっかりと意見交換を行い、全体の分析精度を高めるよう努めてください。

データ・アナリティクス入門

データの本質を掴む!実務に活かす分析技術

分析の本質とは? この学びを通じて、分析の本質を理解することができました。分析とは「比較」することが核心であり、特に条件を整えた「Apple to Apple」の比較が重要です。まずは「何を明らかにしたいのか?」を明確にし、そのために「何と何を比較すべきか?」を定めることが大切です。 棒グラフ作成の注意点は? 印象に残った点として、棒グラフの縦軸と横軸など、細かな部分にまで注意を払ってより分かりやすく伝えることが求められるということです。例えば、縦軸は上がった・下がったを示し、横軸は要素間の比較を表現します。普段は手元のデータだけで判断してしまうことが多かったと気づかされました。この分析の本質は、課題解決のための分析決定だけでなく、解決策の実行後の効果検証にも活用できると感じました。 具体的な応用法は? 具体的な応用として、解決策の効果を比較することが挙げられます。解決策を導入する場合としない場合での比較を行い、条件をできるだけフェアに揃えることが重要です。この考え方を業務に活かすことで、顧客の課題を定量的に解決する方法を確立し、納得できる成果を提示できるようになると期待しています。 より良い分析へのプロセス この知識はすぐに実務に活用できるもので、特に分析の本質を理解できたことは大きな収穫です。今後、以下の流れを意識して分析の質を向上させていきたいと思います。 まずは課題の明確化から始め、何が課題なのかを特定し、解決するためにどのような分析が必要かを考えます。次に仮説を設定し、それを検証するためのデータを収集します。重要なのはフェアな条件で比較できるようにデータを集め、分析結果を分かりやすく可視化することです。 最後に、結果を解釈し示唆を整理します。ただ結果を提示するだけではなく、その傾向や含意をまとめ、目的に沿った分析であるかを確認します。この一連のプロセスを通じて、より質の高い分析を目指していきます。

データ・アナリティクス入門

仮説と問いで広がる学び

結論と問題は何が違う? ケーススタディを通して、私は結論の仮説と問題の仮説の違いについて学びました。これまで結論と問題の仮説を意識することはほとんどありませんでしたが、結論の仮説は答えを先に仮定してから分析を進める手法であり、問題の仮説は問題の本質や真因に迫りながら「なぜ?」と問い続ける流れであると理解するようになりました。 考えの整理はどうする? また、仮説を立てる際には、自分の考えを整理し、納得感や他者への説明力を高めるために、網羅性が非常に重要だと実感しました。誰が読んでも理解しやすいようにフレームワークを活用することで、従来の方法に比べ、思考が整理され、見やすく理解しやすいアウトプットが得られると感じています。 時間軸の重要性って? さらに、課題を考える際には、過去・現在・未来という時間軸で捉えることが重要であると学びました。問題がいつ発生しているのかを明確にすることで、現在の状態を正確に把握し、なぜその状況になったのか過去を振り返り、将来の理想像に向けて現状で何をすべきかを考えることで、より納得のいく議論ができると感じています。 企画で何を考える? 通常の業務において新商品や新機能を企画する際は、価値(魅力)とコストのバランスを考慮します。コストを削減する方法を検討する過程では、複数の仮説を立てるとともに、迅速に検証を行いアウトプットに結びつけることが求められます。うまくいかなかった仮説に対しては、なぜ失敗したのかをしっかり確認し、次につなげることが大切です。 国際展開の特徴は? また、現在の業務では、同じような製品を複数の国で展開しています。各国の特徴や強み・弱みをフレームワークを用いて整理し、そこから抽出した課題に対して改善策をいくつかの仮説として立て、検証を実施しています。このプロセスをグループ内で共有することで、より広い視野での理解が進み、全体のパフォーマンス向上につなげています。

クリティカルシンキング入門

自分発見!学びを紐解く旅

どう理解を深める? 状況を正しく理解するためには、層別分解、因数分解、プロセス分解など、様々なパターンを活用し、多角的な切り口で分解していくことが有効です。ただし、最初に「理解したつもり」になることなく、何度も分解を繰り返す姿勢が重要です。全体を具体的に定義しなければ、後々解像度が落ちる恐れがあるため、まずは全体像を正確にとらえることが求められます。目的を明確にした上で、その目的に即した切り口で分解していくことが、効率的な理解につながると言えるでしょう。また、たとえ分解しても理解が進まなくても、現状が「何もわからない」という事実に気づけること自体が大きな前進です。さらに、MECE(漏れなく、ダブりなく)という考え方は、情報を網羅的かつ重複なく把握するために非常に役立ちます。 データ分析は有効? また、社内の課題の原因を正しく捉えるために、業務関連のデータ分析を積極的に活用することも重要です。具体的には、社内システムからデータをダウンロードし、グラフに落とし込むことで傾向を把握し、その結果を用いてプロジェクトの方向性に対する合意形成を行うといった流れが考えられます。作成した資料についても、MECEの考え方を活用し、漏れや重複がないかを確認することで、より正確な情報共有が可能になります。 どこから挑戦すべき? 実践演習の中では、売り手や顧客側の情報に基づき分解を試みる際、直接的なアンケート調査を行うのが難しいという課題に直面することもありました。そのような場合は、手元にある情報のみをもとにまず推測を試み、どのようなアンケート調査が必要で、何の回答を得るためのものなのかといった目的を明確にする必要があります。情報が限られていると何から手を付けてよいのか分からなくなることもありますが、他の方々の状況やスキル、取り組み方などを参考にすることで、どのように工夫し、どこから始めるべきかのヒントが得られると感じました。

デザイン思考入門

現場の声で磨く課題解決力

共通課題は何だろう? 店舗のオペレーション課題解決においては、単に会議での発言や市場視察の情報だけを頼りにするのではなく、どの店舗でも共通する課題なのかどうかを十分に確認して定義することの重要性を実感しました。 定量と定性はどうなる? そのため、普段から実施しているアンケートなどによる定量分析と、ヒアリングや現場の観察を通じた定性分析を併用することを、これまで以上に意識していきたいと思います。特に、定性分析においてはコーディング手法の活用をすぐに実践する所存です。 ペルソナはどう捉える? また、現状を把握するだけでなく、具体的なペルソナを特定し、ユーザーの感情にまで思いを巡らせることが大切だと感じました。ペルソナをいくつか明確に意識することで、本当に解決すべき課題が何か、その根本的な原因は他にもないかと前提を疑いながら多角的に考える習慣が身についてきました。 課題定義は進む? 今後は自分一人にとどまらず、周囲のメンバーも巻き込みながら課題定義を進めていくつもりです。課題定義のフェーズでは、①問題の本質を捉える、②洞察の整理と可視化、③顧客課題仮説の作成、④ユーザー中心の視点の維持、⑤検証と改善という5つのポイントが重要だと感じました。 潜在課題に気づく? 中でも、カスタマージャーニーマップを活用する点と、顧客課題仮説を作成する際にシンプルで明確な課題文を構築する方法に大きな気づきを得ました。カスタマージャーニーマップはユーザーの行動だけでなく感情の流れにも着目することで、潜在的な課題を浮き彫りにしますし、明快な課題文はまだ気づかれていなかった潜在的な問題に気づく手助けとなります。 アウトプットは十分か? 最後に、ある講師の「学びの深さはアウトプットの量に比例する」という言葉が心に響きました。今後も実務を通じて、積極的にアウトプットを行いながら学びを深めていきたいと思います。

クリティカルシンキング入門

学びを深めるための具体化と抽象化の工夫

日本語文章整えるには? 日本語は主語や述語が抜けやすく、順序が異なると意味が変わることがあります。学生時代には学んでいたはずなのですが、大人になるにつれて文章を適当に組み立ててしまっていたと反省しました。その結果、自分の言いたいことが伝わりにくくなっていた理由が理解できました。ピラミッドストラクチャーの目的は理解できましたが、実際に駆使するとなると時間的な制約もあり、難しいと感じました。ただし、日頃から抽象化と具体化をトレーニングすることで、迅速で正確な思考のツリーを構築することにつながると感じています。 可視化がもたらす効果は? 1週目の学びでは、「手を動かし」ながら可視化することの重要性を認識しました。ツリーを視覚化し、思考を習慣化することが重要だと理解できました。 教育現場での抽象化の活用法は? また、人との会話では、一度抽象化して「何を伝えたいのか」を把握することが大切です。特に教育現場においては、具体化したコミュニケーションが重要で、全体像が見えなくなることが多いです。支援者と同じ目線で考えるだけでは、抜け漏れが発生しやすく、思考が停止することもあります。そのため、一度抽象化して全体の流れを把握した上で、具体的な指導に進むことが必要です。 ピラミッドストラクチャーの実践法 さらに、様々な原因や症状を持つ病気に対しては、直感的に考えるのではなく、ピラミッドストラクチャーを使用して全体像を確認しながら、優先度と緊急度を評価して行動していくことが有効です。 1日のルーチンに組み込むには? 最後に、1日に1回はピラミッドストラクチャーをA4用紙に書き出す(題材は何でもOK)こと、結論を伝えその理由を「なぜなら」と3つ挙げて伝えること、そして自分の音声を録音して内容の構造を可視化することも有効です。また、話し方がうまい人から直接ポイントについてアドバイスを受けることも有益でしょう。

データ・アナリティクス入門

一歩踏み出す再学習の軌跡

全体像を再確認? これまでの学習内容を振り返る中で、全体像を再確認できたと感じています。毎週の講義では、個々の演習を通じて内容を確認する機会がありましたが、連続性が不足していたため、先週と今週の学習でその点が整理された印象を受けました。また、従来のやり方や考え方にとらわれがちであることを学びの中で指摘され、再度学び直す必要性を実感しました。 特許情報の活用は? 環境分析においては、特許情報と非特許情報を組み合わせた手法のニーズが高まっていることから、今回の学習で得た知識や手法を取り入れていきたいと考えています。特に、分析は比較が前提であることや、「目的」の重要性について、チーム内での認識が揺らがないよう常に確認する点、そして仮説志向で同じパターンに偏りがないか、使用するデータが適切かを検証すること、さらにWhat-Where-When-Howの観点から確認と検証を行うことが必要です。 データ分析の課題は? これまでの業務を振り返ると、部署や立場が異なるチームでデータ分析に基づく活動を進める際、結果を重視した分析や、データから無理に仮説を導いたり、エイヤーで問題設定を行ったりしていたことに気付きました。今後は今回学習した流れをもとに、自らの手でハンドリングできるよう、実践の機会を積み重ねたいと思います。 問題解決の手順は? また、データ分析に限らず「問題解決のSTEP」を意識して業務に取り組むようになりました。分析を進める過程で、常に「目的」の認識に相違がないか確認し、スケールの大きい要求に対しては漠然とした要求を細分化し、より適切なデータ分析とアウトプットが実現できるよう努めたいと考えています。まずは、自分が担当するチームの開発テーマや製品の規模に合わせたデータ分析を実施し、その結果を第三者であるチームに説明することで、考え方や手順の定着を図っていきたいです。

データ・アナリティクス入門

問題の原因をデータ分析で解明!

問題の原因をどう探る? 問題の原因を探るためには、データを確認しながら原因を突き止めることが重要です。問題の原因を明らかにするために、プロセスを分散して問題箇所を絞り込み、原因の仮説を立てるのが効果的です。問題がある場合、その結果には必ずその流れがあり、その流れを押さえることで、プロセスのどの段階に問題があるのかを特定できます。 解決策の検討はどう進める? 解決策を検討する際は、複数の選択肢を洗い出し、根拠を持って絞り込むことが求められます。ステップを踏んでデータを分析し、問題解決の精度を高めることと、仮説を試しながらデータを収集し、より良い問題解決に繋げることは、両者のアプローチを組み合わせることが効果的です。まず手始めに身の回りのデータを分析すること、分析の練習を積み重ねること、そしてどんな分析計画を立てるかシミュレーションし、どんな情報を誰から収集するのか、データはどんな形で収集すればよいかを考えることが大切です。 シンプルで低コストなA/Bテストの利点 A/Bテストは、AとBの施策を比較するシンプルなテストです。運用や判断がしやすく、低コストで少ない工数で実施できるため、リスクが少ない。A/Bテストを行う際には、目的や仮説をしっかりと明確にし、有効なデータが集まるまで実施します。ただし、複数の要素をテストしたい場合には別の手法を検討すべきです。また、パターンは同時に同じ期間行うことが必要です。 データ分析の第一歩は何から始める? 解決策を考えるときには、必ず複数の選択肢を検討し、「ステップを踏んでのデータ分析」と「仮説を試しながらのデータ収集」の両輪で分析を行うことが効果的です。分析が苦手な方には、まず身の回りのデータを分析すること、分析の練習を積み重ねること、そして問題にはそこに至るまでの流れがあることを意識することをお勧めします。
AIコーチング導線バナー

「確認 × 流れ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right