クリティカルシンキング入門

思考を深める問いの力

問いの意義は何? 問いの形を用いる理由は、人間の特性として問いかけられることで頭が活発に働くためです。ただ情報を与えられるだけでは考えず、課題や疑問にも気づかないことがあります。そのため、自分の思考を整理する際には「問い」を優先して考えるべきです。特にメンバーに課題を意識してもらうために問いを立てることは効果的です。 メタ認知を鍛えるには? メタ認知を鍛えるのも重要です。これは主観を客観に変える力を持つことで達成できます。異なる業種や職種で離れた位置にいる人と深く意見交換をすることで、このメタ認知能力を向上させることができます。この能力は、上司や他部署の視点を取り入れ、多角的に物事を捉えるために活用できます。 業務改善の手法は? 具体的な業務改善の場面では、問いを立ててピラミッドストラクチャーを使用し、漏れがないかを確認します。改善が成功すれば、その問いが解決されたかを振り返ることも重要です。また、仮説を立て、それに対する上司や異なる意見を受け入れ、修正しながら想定を広げていくことが求められます。これは日常業務だけでなく、他の会社の方との深い意見交換の場でも活かせます。マネジメント手法や思考方法などについての議論を通じて、自分の視野を広げることができます。

アカウンティング入門

プロが教える株式投資の第一歩

貸借対照表の読み解き方は? 企業業種によって貸借対照表には特徴があり、その特徴を読み取ることで、企業がどのような事業形態でビジネスを行い、どこにお金がかかっているのかを理解することができます。また、企業の流動負債比率を見ることで倒産リスクを評価することができるため、貸借対照表はリスク評価に有用です。 株式投資における分析の重要性 私の業務では貸借対照表を見る機会は少ないかもしれませんが、自分の研鑽として株式投資をするにあたり、貸借対照表を用いた企業分析が重要であると感じています。そのため、闇雲に投資するのではなく、貸借対照表を分析するサイトなどを活用しながら、投資を楽しく続けていきたいと考えています。 投資プロセスのステップは? 今後、新たに株式投資を追加する予定があるため、まずは興味のある企業をいくつかピックアップし、貸借対照表を確認することから始めたいと思います。具体的には次のステップを考えています。 - 新規投資先の選定(興味のある企業をピックアップ) - 企業のHPに掲載されているIR情報の読み込み - 直近の株主総会の報告書を見て将来の展望を理解 - 実際に投資 このプロセスを通じて、より賢明な投資判断ができるよう努めたいと思います。

データ・アナリティクス入門

平均値だけじゃ見えないデータの世界

グラフは何が魅力? データを単に羅列するだけでは、その特徴を十分に捉えにくいと感じます。グラフや数字を積極的に利用することで、情報がより具体的に伝わります。グラフは目的に合わせた種類を選択することが重要です。 代表値とばらつきは? 数字を扱う際は、代表値とばらつきの両面でデータを確認する必要があります。代表値としては、単純平均、加重平均、幾何平均、中央値などがあり、ばらつきは標準偏差によって把握できます。 平均値だけで良い? 業務においては、これまで平均値のみで物事を理解したつもりになってしまうことがありました。今後は、ばらつきも合わせて確認することで、データの持つ本質をより正確に捉えるよう意識したいと思います。 NPSは評価できる? また、各ブランドごとに算出したNPSについても、単に数値のみを評価するのではなく、回答の分布にも目を向けることが大切です。 グラフで見える? ユーザー調査では、各回答を平均値で報告するケースが多いですが、ばらつきに着目することで、各データの特徴がより明確になります。一方で、標準偏差を数字だけで示すと直感的に理解しにくい部分があるため、グラフを効果的に活用することで改善できると感じます。

戦略思考入門

戦略思考で目指せ!結果最大化の道

戦略をどう磨く? 戦略思考を身につけるためには、まずgoalを明確に定めることが重要です。その上で、goalに到達するための最短経路を考え、必要に応じて戦わない選択肢も含めることが求められます。また、他のメンバーをうまく巻き込んでいくことや、必要なものと不要なものを取捨選択することも重要です。戦略では長期的な視点、戦術では短期的な視点の両方を持ち、自分の強みを活かすことが必要です。 goalはどう具体化? goalの具体化については、例えば日々の顧客との面談や、新規プロジェクトで短期間で結果を出すことを求められる場面、定例のチーム会議などがあります。上層部からの方針を鵜呑みにせず、その意義を考えたり、結果を最大化する方法や、誰を巻き込むと効率よく達成できるのかを思索し、提案していく姿勢が求められます。 各面談はどう備える? 各面談でgoalを明確化し、準備したスライドに脱線しそうな不要な情報が含まれていないかを事前に確認することが大切です。また、プロジェクト実施中はgoalに合致した内容かを常に意識し、実施したこと自体が目的化しないよう注意を払う必要があります。他のメンバーには意見を求め、自分と異なる意見であっても一度は受け入れる姿勢が求められます。

データ・アナリティクス入門

分析と比較で成果を最大化するヒント

分析には何が必要か? 今週は、「分析には比較や目的設定が重要であり、条件を揃える必要がある」という内容を学びました。確かにそうだと思う内容が多く、これらのポイントは今後も常に忘れないようにしたいです。 新たな知識の発見 一方で、LIVE授業を通じて新しい知識も得ることができました。定量分析に定性分析が加わることや、平均にするべき数字と平均にしないほうが良い数字など、目的によって異なるという点が特に興味深かったです。 クライアント提案時の比較 クライアントへの提案時には、広告効果を伝える必要があります。他社や過去の結果と比較し、より効果があることを示したいです。また、自身の営業計画を立案する際にも、過去の実績や先輩の成果と比較し、達成の共通点を探りたいと思います。 上長との振り返りで何を確認する? まずは上長と今回の学びを振り返り、クライアントへの提案で話せるように比較ポイントを洗い出したいと思います。上長と取りこぼしがないか確認し、その後で必要な情報を集めます。さらに、四半期ごとの計画立案時には、自分の達成した成果と比較し、成功のポイントを明確にしたいです。また、達成傾向にある先輩と比較することで、さらなる成功の糸口を見つけたいと思います。

データ・アナリティクス入門

問題解決の基本を再確認:MECEとロジックツリーの活用法

問題解決の基礎を学ぶ 今週は、問題解決の4ステップ(What→Where→Why→How)のうち、What(問題の明確化)について学びました。目的を見失わないために、あるべき姿と現状のギャップを数値や定量的に示すことが重要です。そのため、MECEを使い、漏れなく重複なく分解して考えると良いということを再認識しました。 分解の難しさをどう克服する? 過去にロジックツリーを学んだことがありますが、MECEを意識しながら何で分解すべきかを羅列するのは難しいと感じています。多くの場合、目の前の情報や限られた知識だけで分解した気になってしまうことが多いです。この課題を解決するために、最近は生成AIを活用し、プロトコルやフレームワークを使って客観的な情報を得る機会が増えています。これにより、自分でロジックツリーを使って分析しつつ、他者やAIから得られる情報を組み合わせて問題を明確化していきたいと考えています。 学びを日常でどう活かす? 毎月の会議資料や日常の部門の問題解決手段を検討する際に、この学びを活用します。ステップを踏んで考え、MECEを意識しながら、広く情報収集し、ロジックツリーを使って情報を分解することで、まずは問題を明確にすることから始めたいです。

データ・アナリティクス入門

現場を解剖!数字と直感のコラボ

見えるギャップは何? データ分析では、目についた情報にとらわれやすく、都合の良い解釈に陥るリスクがあると感じました。しかし、What / Where / Why / Howの切り口で数値同士を比較し、実際の現場で何が起きているのか確認することで、あるべき姿と現状のギャップを明確にし、解決への道筋を意識することが大切だと学びました。 KPI設定の真意は? また、サイト分析におけるKPI設定では、ロジックツリーの考え方を活用して全体を俯瞰し、各階層に分解するMECEを意識したアプローチに新たな気づきを得ました。こうした手法は、課題解決や売上、集客の分析においても非常に有用だと考えています。 具体分析の切り口は? さらに、現在取り組んでいるECサイトのデータ分析では、感度の良い切り口を増やし、より具体的な分析を行いたいと思います。クライアントのサイト課題をあぶり出し、ロジックツリーに落とし込むことで、強化すべきポイントを整理する作業に役立てていくつもりです。 今後の施策は? 引き続き、現場の状況確認を踏まえながら、What / Where / Why / Howの視点とMECEを意識して分析を進め、課題解決に向けた具体的な施策を模索していきます。

データ・アナリティクス入門

ストーリーで輝く分析のヒント

分析のストーリーは? 分析にはストーリーがあるという考えを強く認識しました。自分の分析では、What‐Where‐Why‐Howの各段階で一連のストーリーを明確に把握することが大切だと感じています。各段階のタスクが直前の段階とのつながりを持っているかどうかを振り返ることで、無駄がなく論理的な飛躍も防げるという点を、例題を通じて実践することで実感しました。 依頼対応のポイントは? また、急な分析依頼に対応する場面でも、提供された情報だけでは問題本質(What)が十分に理解できないと感じた場合は、依頼者に直接確認するなど、問題の明確化に努めたいと思います。こうした確認を徹底すれば、Where以降の作業は自分の担当領域で適切に対処でき、正しい分析ストーリーに沿った有意義な解決策を導き出すことができると考えています。 今後の管理方法は? 今後は、すべての作業においてWhat‐Where‐Why‐Howを軸に管理していきたいと思います。次に何をすべきかを判断する際、その選択肢についてじっくり立ち止まり、同じ段階の他の可能性がないか検討します。また、実施前にも一つ前の段階とのストーリーを再確認しながら、常に論理的で一貫性のある分析作業に努めていきます。

アカウンティング入門

アカウンティング苦手でも大丈夫!学び直しの一歩

明確な目的を持つ理由とは? 森先生による1回目のライブ授業では、本講座を受講する際に明確な目的を持つことの重要性が強調されました。漠然と授業を受けるだけでは知識は身につかず、受講完了後の自分の姿をしっかりとイメージすることから始めるべきだとされました。私も他の受講生同様に、アカウンティングは言葉が難解で、数字に強くないと理解が難しいという固定概念を持っていました。しかし、この講座では構造と意味合いを理解することが目的であり、財務諸表に記載された内容を理解できることが求められるので、少し肩の荷が下りました。 経営報告会を活用するには? 社長が年に数回開催する経営状況の報告会では、アカウンティング情報を用いた説明が行われます。これまではその情報を深く理解することができずにいましたが、今後はそのような報告を理解し、さらに自ら分析して今後の経営計画を立てられるようになることが理想です。 学びを深めるための具体策 これを達成するために、まず過去の社長説明資料を確認し、直近の経営状況についても確認することから始めます。また、グループワークまでに森先生が紹介した書籍を購入して読み進め、その内容をグループワークで説明できるように準備します。

データ・アナリティクス入門

戦闘機も驚く分析の力

分析の本質を問う? 分析においては、情報を分類し比較することが基本であり、目的は人が考えるものであると実感しました。データに存在しない要素についても推測しながら考える必要があり、戦闘機の例を通じてその重要性を感じました。仕事に活かすためには常に目的を忘れず、何のために分析を行っているのかを明確にし、仮説を常に立てることが求められます。また、仮説を立てる際にはラテラルシンキングの発想も必要だと感じています。 人事データの壁は? 人事領域のデータを取り扱う際、定量化が難しい項目が多い点に気づきました。そのため、データの収集方法から見直し、定量データとして分析できるよう設計することが必要であると考えます。このアプローチにより、あいまいな感覚で当たりをつけるのではなく、常に仮説を持って検証を進めることができると感じました。 目的再確認の意義は? さらに、データ分析を行うにあたり、何のために分析をするのかという目的を明確にすることが肝要です。目的に沿った設問項目の設定と、得られた結果からどういった提言を行うかをしっかりと考える力が必要だと感じました。分析すること自体が目的化しないよう、定期的に目的を振り返る時間を持つことも大切だと改めて思いました。

クリティカルシンキング入門

小さな問い、大きな発見

問いはどう始める? 何かを考える第一歩は、まず「問いを立てる」ことです。その過程では、「問いから始める」「問いを残す」「問いを共有する」という3つのポイントが重要です。 問いの焦点は何? また、問いの妥当性を確認するためには、その問いが抽象的で広いのか、具体的で狭いのか、さらに原因寄りなのか打ち手寄りなのかを検討することが必要です。すぐに思いつく問いは具体的で打ち手に偏りやすく、その結果、導かれる解も狭く浅くなる傾向があります。したがって、まずは原因に着目した問いを立てることが大切です。 環境をどう読み解く? さらに、問いを立てる際には、現状の環境を分析し、目的を明確にするための情報整理が不可欠です。環境分析を通して、目標に向けた適切な問いが形成され、その問いを基により広い視野で問題にアプローチできるようになります。 仲間と問いを共有? 今後は、解決までのプロセスにおいて、自ら問いかけを繰り返しながら、立てた問いを協働する仲間と共有することを心がけたいと思います。業務においては説明責任も求められるため、今回学んだ思考のプロセスを継続的に実践し、言語化のスキルを磨くことで、無意識のうちに適切な問いを立てられる状態を目指していきます。

データ・アナリティクス入門

問題解決力を磨くための新たな視点

問題解決で大切な視点は? 問題解決のプロセスにおいて、重要なのは「あるべき姿」と「現状」のギャップを意識し、その上で優先度や重要度に基づいて取り組むか否かを選択することです。このステップは一方通行ではなく、行き来することもあります。定量的な評価を行う際は、単に数値の変化に注目するだけでなく、現場で何が実際に起きているのかを確認することも大切です。また、人に説明する際にはビジュアル化が有用です。 課題設定でのポイントは? 問題解決の際には、課題の設定で「あるべき姿」が明確にされているかを確認します。実務に取り組みながら、今行っている作業が問題解決のどのステップに当たるのかを常に意識することが求められます。定量情報に偏ることなく、現場の状況や定性情報も取り入れ、適切な切り口や仮説を設定します。 分析計画で留意すべきは? 分析に先立って行う分析計画表には、「あるべき姿」とそのギャップ、各問題解決ステップにおける具体的な作業を記載します。多面的なデータ分析を行い、状況に応じて計画の修正を柔軟に行うことが求められます。また、MECE(漏れなく重複なく)にあまりにもこだわるよりは、意味のある切り口や仮説を意識しながらデータに向き合うことが重要です。
AIコーチング導線バナー

「確認 × 情報」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right