クリティカルシンキング入門

問いで切り拓く学びの未来

イシューはどう設定? イシュー設定については、まず問いの形で課題を明確化することが重要です。問いに固執しすぎず、議論が進む中でもし批判があったり、メンバーがついていかなくなった場合は、イシュー自体を見直すサインと捉えるようにしましょう。 分解と統合は何故? また、問題を分解する際は、分解と統合を繰り返しながら、着目すべきポイントをストックしていくことが基本です。たとえば、人、商品、時間、季節、場所など、さまざまな視点(箱)から情報を整理することで、議論の軸が固まります。そして、耳にした情報の構成要素を分析し、着眼点をストックする習慣をつけることが大切です。 会議はどう進める? さらに、社内外の打ち合わせ時には、まずイシューを問いの形で設定することを心掛けます。議論中に論点がずれないよう、事前に決めた目標を振り返るなど、焦点がぶれない工夫が必要です。イシューが決まった後、問題の分解に苦労している場合は、切り口のストック化を進める取り組みが効果的です。 分析習慣はどう有効? このように、聞いた情報をもとに分析し、着眼点を増やす習慣を身につけることで、打ち合わせや議論がよりスムーズに進むようになります。

戦略思考入門

差別化を極める学びの軌跡

誰に価値を届ける? 差別化について学ぶ中で、様々な視点や切り口から「良い差別化」を実現する必要性を実感しました。まず、価値を提供すべき顧客を明確に規定し、深く理解することが、効果的な差別化の第一歩であると再認識しました。 模倣防止はどう実現? また、持続可能な仕組みを構築し、競合に模倣されにくい戦略を打ち出すために、VRIO分析のようなフレームワークを用いて立ち止まって考えることの重要性を感じました。特に、VRIO分析では、企業文化や組織といったソフトな要素が有効な資源となり得る点が印象的でした。 企業文化をどう表現? 一方で、共通認識としてユニークな企業文化を保有しているという認識はあるものの、それがどのように自社の価値創造に寄与しているかを十分に言語化できていないと感じました。今後は、VRIO分析を活用して、競合と自社それぞれの強みや特徴をより深く理解し、注力すべきポイントを明確にすることで、戦略の方向性を提案していきたいと思います。 実例はどう活かす? さらに、VRIO分析の活用方法についてまだ理解が不十分な部分があるため、具体的な事例を参考にしながら知識を深めていきたいと考えています。

データ・アナリティクス入門

データ活用で未来を変える!実践的AB分析の学び

AB分析の学びとは? AB分析の考え方を学んだことは非常に参考になりました。以前の職場でGoogle Analyticsを使って広告を打っていた時、状況や変更条件を明確にせず、場当たり的に行動していたことを反省しています。 仮説を立てる重要性を知る また、問題解決の過程で仮説を立てることの重要性も学びました。これまではなんとなくデータを集め、目的が薄いままに対応策を練ることが多かったため、今回の学習でその姿勢を改める必要があると感じました。 長期的な効果検証の可能性 さらに学んだこととして、数か月単位で施策を変更するのは難しいものの、一年から数年単位で効果を検証することは可能かもしれないということです。例えば、入学後のパフォーマンスを分析して入試の内容を変える、といった具体例が上げられます。 必要なデータをどう見極める? 現在、大学内で取得しているデータについて、真に必要なものは何か、また不足しているものは何かを見極めたいと考えています。学生生活の構成要素を学業やサークル活動、就職だけでなく、より多くの要素に分解することで、学生のリアルな状況がより理解できるのではないかと思っています。

データ・アナリティクス入門

数字を紡ぐ、現場からのヒント

どう分析すれば良い? 「やみくもに分析しない」という言葉を目にし、データ分析の奥深さを再認識しました。現在、チームで検討中の施策に対し、まずは営業担当へのインタビューを実施し、そこで多くの意見が寄せられた内容については、全体を対象にアンケートを行う計画です。 数字の根拠は何故? 数字の根拠をもとにストーリーを作り上げる手法は、相手に響く説得力を持たせる上で非常に重要であると改めて感じました。この考えを念頭に置きながら、実務におけるデータ分析のアプローチをさらに熟考する機会となりました。Week6で総復習を予定していた中で、新たな気づきを得ることができたのは大きな収穫でした。 実務データの秘訣? また、AIコーチングからは、実務における定性データ(インタビューやアンケート)と定量データとの整合性や、数字の根拠から効果的なストーリーを作るための仮説検証のプロセスについての問いをいただきました。まずは、アンケートを通じて定量データを効率よく収集できる仕組み作りに取り組むとともに、過去から蓄積している定量データの中から、今回の営業担当へのアンケートに活用できるものがないかを洗い出してみようと思います。

データ・アナリティクス入門

ロジックツリーで解明する挑戦

問題解決の第一歩は? 問題解決のプロセスは、「問題の明確化、問題の特定、分析、立案」の4つのステップで進めることが基本です。まず、あるべき姿と現状とのギャップを整理し、定量的な指標で表現することで、問題の本質を明らかにします。 ロジックツリーの意味は? 次に、ロジックツリーを用いて問題を層別分解と変数分解の視点から特定します。この手法は、抜け漏れなく全体を捉えるために有効であり、MECEの考え方を取り入れることで、効率的な分析が可能になります。 データ分析の見直しは? 実際の業務では、ある営業活動の最適化に向けた分析で、手元のデータをもとに検証を試みたものの、結論に至る前に、まずロジックツリーによる要素の分解と、分析の切り口についての再検討が必要だと感じました。また、参加しているプロジェクト全体のパフォーマンス改善にも、この手法を活用できると考えております。 改善策の判断は? ただし、分析においては良い切り口と悪い切り口の判断が難しいという現実も感じました。今後は、これらの手法を実践しながら、より効果的な分析の切り口を見極め、改善策を立案していくことが重要だと実感しています。

クリティカルシンキング入門

問いを共有して成果を引き出す秘訣

正しい問いの立て方は? 問題に取り組む際に、初めに正しい問いを立てないと、間違った問いに対する施策では成果が得られません。会議ではその日の問いを皆で共有し、それを常に忘れずに問いに立ち返ることの重要性を痛感しました。組織でこのような徹底をしないと、同床異夢になってしまうことがよく分かりました。例えば、売上をどのように構成要素に分けるかといったトレーニングは非常に勉強になりました。 業績比較で何が見える? 業績推移を2000年と2024年で売上や単価、件数、社員数、求人数、求人決定数、担当者毎のスカウト数や返信率などを比較することで、多くのことが明確になり、予測可能なことが増加すると考えます。こうした分析により、現状の科学的特定が容易になり、自社の業績に外部環境がどのように影響しているかを理解しやすくなります。 会議でどう問いを活かす? 日常のリーダー会でも、優れた問いを皆で共有し、会議が終わるまでその意識を保ち続けることが肝要です。打ち合わせ記録にもアジェンダの他に問いを共有すると効果的です。年末年始には過去5年の業績推移を分析し、何が何と相関があるのかを明らかにすることが可能だと思います。

データ・アナリティクス入門

論理と実践で描く解決ストーリー

数値に隠れた真実は? 本単科で学んだ内容を振り返り、まず、データ分析は単なる数値の羅列ではなく、比較対象を明確にした上で、数値に裏付けられた論理的な問題解決の道筋を描くことが大切であると再認識しました。 問題解決の流れは? また、問題解決にあたっては、思いつきの分析ではなく、問題解決の4ステップを明確にし、解決までのストーリーをしっかりと立てて実行する必要性を学びました。健康経営推進でのKGIやKPIの設定、戦略の見直し、効果的な施策の検討、さらには働きやすさや働きがいの醸成に向けた取り組みとして、男性の育休取得率と女性活躍の相関関係の検証、介護と仕事の両立支援に関する現状把握と課題の抽出、効果検証といった事例を通して、その具体的なアプローチ方法が示されました。 効果的なスキル向上は? 加えて、Excelを用いた関数活用やグラフ作成のスキル向上、可視化資料を活かした説得力のあるプレゼンテーションの訓練が、実践的な分析や提案活動に直結する点も印象的でした。自分が出した解決案を俯瞰的に確認し、他者の意見を取り入れてブラッシュアップすることで、より実効性のある提案が実現できると感じました。

データ・アナリティクス入門

多角的な視点で挑む数字の謎解き

なぜ一案に固執しない? まず、今回最も学んだのは、あらゆる可能性を考慮し、単一の仮説に固執しない分析の大切さです。たとえ一つの数字が上下したとしても、その変動の要因を丹念に探ることが、次の一手を効果的に打つためには必要不可欠であると感じました。 どうして検証が偏った? 業務上、多くの数字を扱う中で、変化の原因を憶測だけで判断してしまっていたことに気づきました。実際、決め打ちした仮説に基づく検証に偏り、他の可能性を最初から除外していたため、十分な検証ができない場合がありました。今後は、ある要因が数字の変動に影響していると考えた際に、同じ要因が別の状況でも現れているかどうかを比較し、分析の基本である比較の原則に立ち返って検証していきたいと考えます。 なぜ多角的に議論する? さらに、仮説を立てた後すぐにデータ分析に入るのではなく、他に考えられる仮説や視点がないかあらゆる角度から検討することが重要だと再認識しました。特に、一人では気づかない視点も存在するはずなので、複数人でデータを見比べる必要性を感じています。そのため、早速4月からは、より多角的に意見を交わせる組織体制に変更できるよう動いています。

データ・アナリティクス入門

仮説の力で未来を切り拓く

仮説の役割は? 仮説とは、ある論点に対する仮の答えであり、目的に応じて「結論の仮説」と「問題解決の仮説」に分類されます。これらは、過去、現在、未来という時間軸によってその内容が変化するため、状況に応じた検討が求められます。仮説を持つことで、個々の仕事における検証能力が高まり、説得力が増すとともにビジネスのスピードや行動の精度も向上します。 会員減少の理由は? たとえば、コミュニティの会員数が減少傾向にある現象について検討する際、フレームワークに沿った分析を行うことで、何が問題なのか、どこに課題があるのか、なぜその問題が生じているのか、さらにはどのように対応すべきかといった具体的な課題が明確になり、改善策も見えてくる可能性があります。このような一連のプロセスは、非常に難しい課題ですが、正確な状況把握と議論の進展に寄与します。 活用法はどう変わる? これまで、仮説を立て検証する際に、フレームワークを十分に活用せず、目の前の事象に対して漠然と対処していた部分がありました。今後は、4Pや3Cなどのフレームワークを効果的に用い、より具体的な仮説を立て検証することが求められると感じています。

クリティカルシンキング入門

ピラミッドストラクチャーで論理的思考を磨く方法

ピラミッドストラクチャーの効果とは? ピラミッドストラクチャーは、論理的に物事を考える際に非常に効果的で取り入れやすいツールだと感じました。結論を導き出すためには、その根拠が必要であり、他人に伝えるためには具体例を挙げて説明することが重要です。 ビジネスシーンでの応用法は? このピラミッドストラクチャーは、結論づけや主張が求められるあらゆる場面で活用できます。例えば、会議での発言や業務フロー改善の企画時などです。特に異なる立場の人が連携する業務や課題を議論する際には、主語述語を明確にし、結論の根拠を明確にすることで、内容をきちんと伝える必要があります。 自己改善への適用事例は? 自分で結論を出したり主張する場面では、ピラミッドストラクチャーを用いて根拠の具体例まで提示した上で発言するように心がけています。また、業務改善のミーティングでは、この手法を用いて課題解決策を説明することが効果的です。さらに、各製品のマーケティングミーティングの際には、営業やマーケティングが考えた施策をピラミッドストラクチャーで分析し、具体的な根拠を明確にすることで、施策の質向上と効果の最大化を図る努力をしています。

データ・アナリティクス入門

見方ひとつで変わるデータの魅力

定量と定性はどう違う? 曖昧な依頼は何が問題? 定量データと定性データは、普段何気なく扱うものですが、実際には全く異なる情報だと実感しました。データ分析を進める際、曖昧な依頼で「とりあえずざっくりで」と指示してしまうことがよくあります。しかし、授業を通じて、何を知りたいのか、何を明確にする必要があるのかをあらかじめ仮説として立て、分析を進める重要性を再認識しました。 顧客情報はどう読む? 市場の声を捉えている? また、日常的に目にする商品開発や研究での顧客情報、市場ニーズといったデータも、単に眺めるだけでは業務に活かしきれていません。これからは、得られた情報から今後の方針を明確にし、必要な開発や提案に結びつける取り組みを進めていきたいと考えています。 グラフ化は何を示す? 話し合いはどんな効果? 普段の情報をただ見るのではなく、グラフ化するなどして多角的にデータを俯瞰し、チームメンバーとのディスカッションの機会を設けることが必要だと感じました。データ分析の楽しさや、他者へ説明し理解してもらえることで生まれる信頼関係も、業務を円滑に進めるための大切な要素だと実感しています。

データ・アナリティクス入門

3W1Hで切り拓く未来への一歩

3W1Hってどんな効果? 問題解決のフレームワークとして3W1Hを活用する意義を改めて実感しました。現状を俯瞰的かつ体系的に把握し、目指す姿とのギャップを明確にするため、データ分析が効果的であることを再認識しました。また、ケースによってはwhenやwhoの視点で整理することも有効であり、状況に応じた思考のヒントとして柔軟に活用していきたいと思います。 採用数の壁は何? 中途採用業務においては、毎年計画値を下回る採用数が課題となっています。ターゲット像の整理、委託先への伝達、募集要項の調整や条件の見直しなど、さまざまな対策を講じてきましたが、いずれもスポット的な打ち手に留まっていました。そこで、なぜ計画値に達していないのか、3W1Hの観点に加え、採用数をロジックツリーで分解し、各要素ごとに対策を考えるアプローチが必要だと感じました。 課題解決の手順は? この喫緊の課題に対して、まずは自身のポジションから現状を3W1Hで整理し、採用プロセスおよび構成要素をもれなくダブりなく書き起こす作業に着手しています。その上で、社内の会議にて問題提起を行い、具体的な打ち手をチーム全体で検討していく予定です。

「分析 × 効果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right