データ・アナリティクス入門

仮説とデータで進む成長の一歩

データ分析の意義は? データ分析そのものが目的ではなく、What・Where・Why・Howの各ステップに沿って、イシューの設定、問題の特定、原因の分析、そして解決策の構築まで進めることの重要性を学びました。 課題解決の要点は? また、課題解決とは現状のマイナス面を正常に近づけるだけでなく、将来のありたい姿に向けた戦略を立てることも含まれている点が新鮮な発見でした。 なぜ提案が浅く? 内部監査の担当として実務を行う中で、課題の特定までは進むことができても、真の原因分析が困難で、改善提案が表面的になってしまうことが多いと感じています。今後は、原因をより深く掘り下げ、具体的な改善策を提案できるように努めたいと思います。また、提起する課題が現状の問題解消を目指すものなのか、将来のビジョンに向けたものなのかを明確に区別して提案できる力を養うことも目標にしています。 仮説検証のプロセスは? What・Where・Why・Howの各場面で仮説を立て、その仮説をデータ分析により検証するプロセスを確実に実行したいと考えています。データ分析だけに留まらず、その他の情報も収集しながら、より深い原因分析と効果的な改善提案ができるよう、引き続き努めていきたいです。

データ・アナリティクス入門

分析と比較で成果を最大化するヒント

分析には何が必要か? 今週は、「分析には比較や目的設定が重要であり、条件を揃える必要がある」という内容を学びました。確かにそうだと思う内容が多く、これらのポイントは今後も常に忘れないようにしたいです。 新たな知識の発見 一方で、LIVE授業を通じて新しい知識も得ることができました。定量分析に定性分析が加わることや、平均にするべき数字と平均にしないほうが良い数字など、目的によって異なるという点が特に興味深かったです。 クライアント提案時の比較 クライアントへの提案時には、広告効果を伝える必要があります。他社や過去の結果と比較し、より効果があることを示したいです。また、自身の営業計画を立案する際にも、過去の実績や先輩の成果と比較し、達成の共通点を探りたいと思います。 上長との振り返りで何を確認する? まずは上長と今回の学びを振り返り、クライアントへの提案で話せるように比較ポイントを洗い出したいと思います。上長と取りこぼしがないか確認し、その後で必要な情報を集めます。さらに、四半期ごとの計画立案時には、自分の達成した成果と比較し、成功のポイントを明確にしたいです。また、達成傾向にある先輩と比較することで、さらなる成功の糸口を見つけたいと思います。

クリティカルシンキング入門

データ分析に革命を起こす秘訣

データ分析の効果的な手法とは? データ分析を効果的に行うには、仮説を持って実際にデータを操作し、その結果を視覚化することが重要です。分析の切り口を考える際には、概念(例えばWhen、Who、Howなど)を意識して、網羅的に考える必要があります。一見、経時変化がないように見える場合でも、その内訳を確認し、本当に変化がないのかを疑ってみるべきです。 業績分析と来年度対策に必要なことは? 年度末に向けては、今年度の業績分析と来年度の計画策定が求められます。そのために、明確な切り口を持ち、業績に関する分析をさらに深化させることが大切です。これまでは一度分析を行うとそれに満足して終わってしまいがちでしたが、今後は他の視点や可能性を常に探求する姿勢を持とうと思います。 多角的視点で分析するには? 業績に関連する分析には通常ストラック図を用いますが、組織全体で集約するだけでなく、四半期別、顧客別、担当者別、契約形態別など、様々な切り口から分析を試みると、従来見えなかった特徴や課題を明確にすることができるかもしれません。また、EXCELのPivotテーブルやPivotグラフを使いこなすことで、自分の意図するデータの可視化ができるよう、積極的に手を動かしていきます。

戦略思考入門

選択と集中が導く成長 戦略で切り拓く未来

精神論は成果に繋がる? 私は精神論に偏り、あれもこれもすべてやってみようという気概で取り組んでいましたが、その結果として実際に習得できた実感は得られませんでした。講義で強調されていた「選択と集中」の視点を大切にし、広く浅く学ぶのではなく、理解から実践へと移行できるよう、繰り返し学び、アウトプットと思考の整理に努めていきます。 転換期の戦略はどのように? 100年に一度と言われる転換期の業界において、社内戦略や将来予測を共有する際、顧客や自社、他社、さらには潜在的な競合の可能性も客観的に把握し、それを基に論理的なプレゼンテーションで上層部を動かしていくことが必要です。具体的には、将来的に自部門のメンバーをどのように活躍させるか、またその活躍が社会や会社にどのように貢献し、お客様へどのような価値を提供するのかを徹底して追求していきます。 戦略実行は効果ある? PEST分析や業界内外の動向に敏感にアンテナを張りつつ、各課題に対して2週間単位で戦略を立案し、それを実践していきます。その戦略を第三者に説明し、改善点についてフィードバックを受けることでさらに向上を図ります。また、各テーマごとに日程を設定し、限られた時間内で一つひとつを丁寧に検討していきます。

クリティカルシンキング入門

思考の癖を突破する3つの視点活用法

思考の癖はどうして? 人には思考の癖があり、考えやすいことや考えたいことを自然と考えてしまいます。これらは無意識に行われ、自分自身で制約を設けていることに気付かないことが多いです。しかし、「視点、視座、視野」の3つの視を意識することで、より広い思考を得ることができます。また、思考の偏りを防ぐために、問題を分解して考えるという手法も効果的です。 学びの活かし方は? この学びは、いくつかの場面で活用できると感じています。たとえば、進行中のプロジェクトでのアイデア出しや、会議用のプレゼン資料を作成する際に役立ちます。また、部下からの提案を一緒に確認したり、データ分析を行う際には、何を知るための分析なのかを意識することで、全てのデータを解析しようという不必要な負担を避けることができます。 会議の進め方は? さらに、自分が開催する打合せでは、冒頭で会議の目的を明確に伝え、出席者の共通認識を一致させた上で会議を開始することが重要です。会議のプレゼン資料を作成する際には、その資料が目的に合致しているか、議論すべき点に見落としがないかを客観的に確認します。そして、議論の場では「本当に?」「なぜ?」という視点を持ち込むことで、議論が一段と深まるようにリードします。

戦略思考入門

無駄を減らし効率UP!振り返り術

優先順位をつけるためには? 捨てるという行為は、優先順位をつけることを意味します。そのためには、現状を分析し、コスト対効果をデータとして明確に可視化することの重要性を学びました。しかし、売上や利益、品質など、具体的に何を目的や目標とするかを決定するノウハウは、別途必要だと感じました。 SES案件営業の新戦略とは? まず、SES案件の営業戦略についてです。売上や利益の拡大、技術的な成長が期待できる顧客をターゲットにした営業活動や社員の採用、育成を行います。具体的には、既存の顧客に対して、企業の売上や成長率、自社の売上、人件費、利益額、それに要員一人当たりの売上や人件費、利益額を算出し、費用対効果を明確にします。そのうえで、営業活動やリソースの投入戦略を策定します。 エンジニアの生産性をどう向上? 次に、エンジニアの生産性向上についてです。残業が多い社員やチームに対して、どのような作業に時間を注いでいるのかを可視化し、各作業の効果を確認します。そして、時間をかけるべき作業であるかを判断し、削減可能かどうかを検討しながら対策を考えることが重要です。このアプローチにより、無駄な作業を削減し、作業の優先順位を適切に設定することで、生産性の向上を図ります。

デザイン思考入門

言語化で磨かれる提案の極意

課題を明確にできた? IRコンサルティング業務では、これまでお客様の課題を明確な言葉で定義していなかったため、今回学んだ手法を通じて、お客様の状況や課題を整理できたと感じています。また、カスタマージャーニーはBtoB事業においても十分に活用できると実感しており、早速試してみたいと思います。 実践はどう進む? 実践については、4週目以降に取り組む予定です。お客様の課題を言語化することで、認識のずれが減少し、提案の精度が向上すると考えています。同時に、BtoBにカスタマージャーニーを適用することで、意思決定プロセスが可視化され、より効果的なコンサルティングが期待できると感じました。 分析法は何が鍵? また、以下の点にも留意しながら進めます。まず、定性分析は仮説の立案を目的とし、定量分析はその仮説の検証を目的とします。定性分析では、コーディングによってデータを1次コードから3次コードへと分類し、体系的に整理します。さらに、ユーザーの暗黙知を把握するためには観察を、形式知を引き出すためにはインタビューを実施し、それぞれを適切に使い分けることが重要です。最後に、ペルソナを具体的に設定し、カスタマージャーニーを描くことで、実践的な分析を目指していきます。

クリティカルシンキング入門

データの本質を引き出す視点の磨き方

データの解像度を上げるには? 目の前にあるデータを単に見るだけでなく、それを加工し、グラフなどで視覚化し、さまざまな切り口で分解することで、データの本質的な意味を理解することができると感じました。このように解像度を上げることで、データが持つ真の価値を引き出すことができます。ただし、自分にとって都合のいい結論に導くためだけに分解して終わらせず、他の切り口がないか、結果に漏れや重複がないかを常に疑う姿勢を持つことが重要です。 事業計画に活かすデータ分析 こうしたアプローチは、事業計画や月次報告などで数字を扱う際に特に効果的だと考えます。数字をただそのまま見るのではなく、複数の視点で分解することによってデータを正確に捉えることができ、その結果、本当の問題やボトルネックが浮き彫りになり、効果的な対策を講じることが可能になるでしょう。 新たな分析視点をどう加える? 事業計画の策定や月次報告の際には、以下の点を意識して取り組みたいと考えています。まず、数字を羅列するのではなく、視覚化して表現することで新たな気づきを得る。そして、これまでに使ったことのない新たな切り口を加えることにより、テンプレートにはない分析を行い、さらなる洞察を得ることを目指します。

クリティカルシンキング入門

問いと視点で挑む自己改革

受講で何を感じた? 今回の受講を通じて、自己のクリティカルシンキングの力が十分でないことを痛感しました。クリティカルシンキングとは、問いを立て、物事の本質を見極めながら最適な解決策を導く思考法であると理解しています。 視点の切替えはどうなってる? 問いを立てる際には、「視点・視座・視野」という三つの“視”が重要であり、状況に応じて柔軟に切り替える必要があります。これまで私は現場視点に偏りがちで、最適な解決策を導き出すことができていませんでした。また、構造分解や要素分解においても、特定の視点にとらわれることで本質的な問題解決が十分に行われなかったと感じています。 MECEは活かせた? さらに、MECE(もれなく、ダブりなく)の思考も不十分で、中途半端な答えに終始してしまう傾向がありました。今後はこの点を意識し、日々の訓練を積むことで思考力を向上させていきたいと考えています。 業務改善に問いは効く? 実務においては、広告戦略の立案や効果の分析、プレゼンテーションの際に「問い」を意識し、目的や課題を明確化します。加えて、MECEを活用して情報を整理し、複数の視点から本質に迫ることで、より効果的な施策や業務改善へと結びつけていく所存です。

データ・アナリティクス入門

仮説と枠組みが切り拓く採用戦略

枠組みは何故有効? 仮説を立てる際、何もないところから考えるのではなく、3Cや4Pといったフレームワークに沿って整理することで、思考の構造が明確になりました。実際、これらの手法を用いることで、多角的な発想が生まれ、スピードや行動の精度が向上することを体感しました。 採用戦略、どう練る? 採用担当としては、仮説思考を3Cおよび4Pと組み合わせることで、効果的な採用戦略が練れると感じています。具体的には、3C分析ではカスタマー(候補者)、コンペティター(競合企業)、カンパニー(自社)の視点から状況を整理し、4Pの枠組みではProduct(採用ポジション)、Price(給与・待遇)、Place(勤務地・環境)、Promotion(採用広告・PR)を検討することで、各視点からの課題と仮説を明確にしています。 PDCAは効果的? また、こうした枠組みを基に、毎週のデータ集計時に採用課題に対する仮説を立て、各仮説に対する検証方法を決定してデータを収集しています。その後、得られた結果を分析し、打ち手を検討した上で採用戦略に反映。定期的に効果を測定し、PDCAサイクルを実践することで、常に戦略の精度を上げていくプロセスが整っていると感じました。

データ・アナリティクス入門

小さな実験から大きな発見

原因分解はどうする? 問題の原因を明らかにするためには、まずプロセスに分解することが重要です。また、解決策を検討する際は、複数の選択肢を洗い出し、根拠をもって絞り込むことが求められます。 テスト実施はどう? ABテストは、条件をできるだけ揃えて比較する有効な手法です。実施する際は、まず目的や仮説を明確にし、検証項目をしっかり設定することが大切です。さらに、テストは1要素ずつ行い、複数の要素を同時に検証する際は他の手法の検討が必要です。加えて、同一期間で実施することでテスト要素以外の環境要因の影響を最小限に抑えることが可能となります。 検証法はどう考える? 広告効果の検証においては、CVポイントやKPIに応じて適切な検証方法が変わります。実際にABテストを実施する場合もあるため、どのポイントを検証するかという仮説設定が非常に重要です。 効果はどこで現れる? 現在、広告効果の検証と分析に活用しているソリューションがあり、さらに新たなソリューションの開発も進めています。両方のソリューションを同時に走らせることで、どのKPIやCVポイントで新しいソリューションの効果が発揮されるかをABテストによって検証する絶好の機会だと考えています。

データ・アナリティクス入門

実践で感じたABテストの奥深さ

テスト手法のメリットは? ABテストは、参加者をA群とB群に分け、同時期に検証を行う比較手法であると学びました。この手法は工程が少なく、比較や分析が容易である点が大きなメリットです。しかし、正確な結果を得るためには、比較ポイントを明確に設定し、その他の要素を同じ条件に統一することが重要です。実施時期をずらしたり、多くの異なる要素を入れてしまうと、正確な比較ができなくなるため注意が必要です。 接触率検証の進め方は? 顧客への電話による接触率の検証にもABテストを適用しています。具体的には、予測ツールを用いて算出した接触率が最も高いとされる時間帯と、ランダムに行った場合の接触率を比較することで、予測ツールの効果を測定しています。また、手紙やSMSの文面案についてもABテストを実施し、より効果の高い方法を見極めています。 テストテーマはどう決める? ABテストの導入にあたっては、まずテストのテーマとターゲットを明確に決定することが重要です。テストテーマは業務目標に直結していることを意識し、ターゲットは一つの要素に絞るように確認します。さらに、比較する際には、データ数、期間、手法が全て同一であるよう計画を立て、正確な検証ができるよう努めます。

「分析 × 効果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right