戦略思考入門

フレームワークで未来を切り拓く

フレームワークの効果は? 学習期間中に習ったフレームワークを意識的に活用することで、設問の意図に気づきやすくなりました。実際、順序立てたフレームワークを用いることで、業務上の戦略が明確な理由に基づいていないことが多い現実に対し、合理的な説明材料を集めて説得に利用できると感じています。 チーム整理はどう? また、時間に余裕がある案件に対しては、大局的な視点から整理する習慣を日常業務で意識するよう努めています。自チームのみならず、関連する部署全体を含めた整理を行うことで、より適切な対応や戦略が立てられると実感しました。 未来計画の鍵は? さらに、次の会計年度の業務プランや方針を検討する際には、PEST分析などの大局的なフレームワークを活用して、効率的に整理し方針決定に役立てたいと考えています。特にTechnology分野では、生成AIの進化と社会への浸透がもたらす既存業務の移行リスクが大きな課題となっており、このリスクを機会として捉え、どのような戦略や対策が最適かを探求することに意義を感じています。

データ・アナリティクス入門

仮説で開く成長の扉

仮説の軸どうする? 仮説を考える際は、一定の軸を持って行うと思考が整理され効率的です。例えば、4P(価格・場所・商品・プロモーション)や3C(顧客・競合・自社)などのフレームワークを活用することで、仮説が一点に偏らず、全体を俯瞰して検討できます。 効果検証のポイントは? また、デジタルマーケティングの効果検証においては、訴求メッセージが狙った対象に適切に伝わっているか、費用対効果が十分か、媒体ごとの違いがあるかなどを意識して仮説を立てることが重要です。ターゲット設定が正確かどうか、その情報が購買に結びついているかという点も、明確な仮説設計を通じて再確認する必要があります。 購買行動の見極めは? さらに、購買データに基づき、どのイベントが発生したときに購買に結びつくのかを意識しながらデータを整理することで、仮説シナリオを構築します。その上で、ターゲットを明確に定め、手元にある各種レポートや分析ツールをもとに、メッセージが本来届くべき相手にしっかり伝わっているかを検証する方法が求められます。

クリティカルシンキング入門

MECEで業務効率アップ!育休復帰計画

MECEの種類って何? MECEの種類には、大きく分けて層別分解、変数分解、プロセス分解の3種類があり、それぞれの分解方法を使い分けることが重要だと感じました。これらの方法を試すことで、自身の分析に最も適した分解手法を見つけることができると学びました。 クラウド相談で何が分かる? 私は、自分の業務でクラウド利用相談においてこの手法を活用できるのではないかと考えています。利用相談の内容を分解することで、利用者が抱える本質的な問題を分析する際に有効だと感じました。特にプロセス分解を用いることで、どのプロセスに問題があるのかを特定し、迅速に問題解決に結びつけることができると考えています。 復帰後の活用は? 来月から育児休暇からの復帰を予定しており、クラウド利用相談でこの手法を活用したいと計画しています。相談内容をプロセス分解し、問題の本質を把握できるように努めます。まずは相談者が何を望んでいるのか全体像を把握し、その中でどこに問題が発生しているのかを分解して特定し、より効果的に対処したいと考えています。

データ・アナリティクス入門

議論が生む新たな発見

多角的視点で何が見えた? 学んだ内容を振り返り、複数の視点から議論することで、これまで見落としていた点や新たな切り口、さまざまなアプローチ方法に多くの気づきを得ることができました。今後は、このような環境を社内にも広げ、各自が自走できる体制を整えていきたいと考えています。 上司の依頼はどう活かす? 日常業務では上司からデータ分析の依頼を受けることが多く、上司の興味関心と実際の事業課題を明確に切り分け、目的意識を持った意味ある分析が事業に貢献できるような環境作りが求められると実感しました。また、データ収集がそれ自体の目的にならないよう、適切なデータの収集と活用に努める必要があります。 実行策にどうつなげる? このため、まずはビジネスプロセスマップやビジネスモデルキャンパスを作成して全体像を把握します。次に、関係者間で課題の所在を共通認識として持ち、データ分析を通じて課題の発見や優先順位、重要度を明確にします。最後に、分析結果に基づき実行策を評価することで、より効果的な改善策を進められると考えています。

データ・アナリティクス入門

再発見!学びの原点と未来

理解の進みはどう? これまで毎週の課題をこなす中で、内容の理解が進んでいると感じていました。しかし、最終講義の際に、一部消化しきれていない点や全体の流れの理解が十分でないことに気付きました。そのため、分析のテクニックに入る前に、基本的な考え方や全体の流れを再確認したいと考えています。 戦略と課題はどう? また、新サービスの展開にあたっては、現状を踏まえた上で、今後の利用促進に向けた提案を実現するための分析が可能であると感じています。一方、社内の購買データの分析については、解決すべき課題が残っているとの相談も受けています。このため、購買データの分析に取り組む前に、目的を明確にし仮説を立て、具体的な取り組みを進めていく必要を認識しています。 具体策はどうする? 具体的には、新サービスについては目的を再確認し、必要なデータの見直しを行います。また、購買データの分析に関しては、事前に解決しなければならない課題に対し、目的の明確化とそのための提案を進めることで、効果的な分析に結び付けたいと考えています。

データ・アナリティクス入門

新しい方法論で業績アップを狙う!

分析の重要性とは? 今週の学習で重視したポイントは、分析は比較であるということです。また、「Apple to Apple」を意識し、適切な比較要素を抽出することも重要です。過去の方法が最善だったのか、新たな方法論があるのか、今後の講義を通じてさらに学びを得たいと考えています。 業績分析をどう活用するか? 私は、自部署の業績分析や戦略策定にこの学びを活用しようと考えています。新規案件の獲得状況や既存案件のプロジェクト収支など、必要な情報を精査し、分析を進めたいと思っています。この分析を基に、新規提案活動、適切なリソースの配置、社員教育など、部門運営の戦略立案に役立てることを目指しています。 情報収集の方法は? はじめに、営業部からのパイプライン情報の共有、リソース計画、メンバーの稼働率、プロジェクトステータス、メンバーのスキルマップなど、各方面からの情報収集を徹底することが必要です。これらの情報を活用し、現状の組織における問題点を把握し、効果的な戦略策定につながるよう努めたいと考えています。

データ・アナリティクス入門

エビデンスが示す戦略の新境地

A/Bテストとは? A/Bテストは、データ分析における「比較」の重要性を実感させる手法です。ランダムにサンプルを抽出することで、一定数の調査データから精度の高い結果が得られる点や、どの工程でボトルネックが発生しているか割合を算出できる点に実践的な可能性を感じました。 戦略の判断基準は? 勤務先のイメージ戦略について、2つの側面のうちどちらを強調すべきかは感覚的には把握しているものの、エビデンスが不足しているため不安な面もあります。A/Bテストを活用すれば、どちらがより効果的か明確に判断できるのではという期待から、早速ターゲティングサービスを提供する業者に同様のサービスがあるか確認する予定です。ただし、単純にAかBのどちらかだけではなく、両方を組み合わせた戦略が効果を高める可能性もあると考え、慎重な実施が必要だと感じています。そこでまずは広告代理店に相談し、業界の広報戦略が十分に実践されていない現状を踏まえた実証実験として、自社と共同で取り組める可能性を探るため、休み明けに連絡するつもりです。

データ・アナリティクス入門

数値分析の極意を学び事業改善へ

分析とは何を指すのか? 目的を明確にしないと、意味のないただの計算・数値になってしまいます。「分析」とは「比較」であり、比較の条件をそろえることが大事です。分析は考察までがセットです。この点を理解することで、意味のある数値やグラフの種類を適切に判断できるようになると思いました。 データをどう活用する? 例えば、WEBサイトやSNSの効果測定では、数値が自動的に出てきますが、それをどう考察するかが重要です。また、アンケート結果の分析では、目的を整理してから項目や回答のさせ方を決めないと、分析できないデータや目的に合わないデータになってしまいます。 明確化の重要性 分析の目的・ゴールを明確化することを最重要視することが肝心です。目の前の数字の増減だけにとらわれず、分析手法やその後の考察までを意識してアンケート設計を行う必要があります。 学んだことをどう実践する? 業務上、数値分析をする機会が度々あるので、今後は学んだことを意識しながら分析手法や報告内容を改善していきたいと思います。

データ・アナリティクス入門

新たな指標で描くデータの未来

どうしてデータ加工が必要? これまで、データ分析では単純平均や標準偏差、棒グラフ、散布図など、一般的な方法を用いてきました。しかし、集めたデータを適切に加工しなければ、想定していた答えや正確な結果を得るのは難しいと学びました。今後は、必要に応じて加重平均や中央値などをより効果的に活用していきたいと考えています。 どの指標が本当に有効? また、単純平均や標準偏差だけに頼ると、データの見え方が一面的になりかねません。そのため、加重平均や幾何平均、中央値といった指標を取り入れ、どの指標がデータを最も適切に表しているのかを検証しながら分析を進めたいと思います。これまでとは異なる視点からデータが見えることを期待しています。 なぜ仮説検証が重要? 特に、私の業務は問題解決のための分析とあるべき姿の考察の両面に関わるため、その時々で適切な仮説を立て、データの表し方を工夫することが求められます。状況に応じた分析手法を積極的に取り入れることで、より正確なデータ分析に繋げていきたいと思います。

クリティカルシンキング入門

これで自分も変われる!ナノ単科の魅力

他の視点をどう取り入れる? 自分一人だけの発想には偏りがあるため、他の視点も取り入れることが重要です。また、問題解決に飛びつくのではなく、しっかりとした分析を行うことが求められます。 効果的なメッセージ伝達法 伝えたいメッセージが分かりやすい文章やグラフを作成するためには、ひと手間を加える努力が必要です。主張の根拠を明確にし、三つの問いに立ち戻ることも大切です。 業務効率改善のためにできることは? 業務効率を改善するためには、現状の問題点を共有し、全員の意識を変革させる活動が重要です。進捗が悪い項目については、その理由を整理し、分かりやすく伝えることで、活動内容を明確にしていくことが求められます。 進捗遅れの改善策をどう探す? 進捗の遅れている状況はデータ化し、改善点をグラフ化して目で見て理解しやすくすることが効果的です。また、改善についての問いを立て、データを基にした根拠とともに共有化することが大切です。活動を明確化し、継続して検証を繰り返すことが、真の改善につながります。

クリティカルシンキング入門

グラフ活用で資料作成が劇的に変わる!

グラフ作成の要点は? グラフ化による情報の伝わりやすさの向上は非常に大きいと感じています。どのような種類のグラフであっても、適切な形で分析されたものを作成することが重要です。具体的には、X軸やY軸の内容を適切に設定することが求められます。また、フォントや色、下線などの要素も伝達力を高めるために工夫する必要があります。 プレゼン資料の工夫は? 特に、パワーポイントを用いたセミナーのプレゼン資料の作成や、製品企画、売上分析を行う際の説明資料では、グラフなどを活用した説明が効果的です。市場分析や現状のビジネス分析においても、手元の数字を視覚化することには大きな意義があります。このようにして資料を作成する際には、なるべく数値だけでなく、その数値の意味をグラフで説明することを意識しています。 確認と改善はどう? 最後に、作成したグラフが適切かどうかを確認するため、講座で学んだ情報と照らし合わせることが必要です。また、他の人のレビューを通じて資料の伝わりやすさを確認し、改善を図ることも重要です。

データ・アナリティクス入門

分析の楽しさ!戦略と挑戦の日々

各要素をどう捉える? 分析の肝は、漏れなくダブりなく各要素を洗い出し、比較することで見えてくる事象から仮説を立てる楽しさにあると実感しました。一方で、効率的で分かりやすいツールの習得がまだ十分でないため、その点を今後解消していきたいと考えています。 売上拡大はどう実現? まず、売上拡大のための各種施策の打ち出しが必要です。また、お客様の行動を分析することでアプローチ方法の見直しが求められます。現状の自社商品の強みや弱みを把握し、適正な人員配置や営業行動計画、業務プロセスの見直しを実施するためには、関係各所のリーダーと連携することが重要です。 育成と戦略の見直しは? さらに、スタッフ育成においては、早期に戦力となっていただくための教育制度の見直しを進め、会社の方針や営業目標を浸透させる努力が必要です。加えて、マーケティング施策の見直しでは、離脱要因を特定し改善を図るとともに、他社の事例研究も欠かせません。最後に、営業戦略の再検討を行い、何が効果的であるのかを見直すことが求められます。

「分析 × 効果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right