デザイン思考入門

デザイン思考で顧客価値を見直す

デザインシンキングとは? デザインシンキングについて詳しく知らないまま申し込んでしまいました。授業中に製品デザインの話が出た際、「もしかしてデザイナー向けのコースなのか?」と思いました。しかし、ユーザーニーズをビジネス価値に変換する方法であることがわかり、「まさに自組織のミッションと合致している」と感じ、改めて受講して良かったと思いました。 顧客価値を高めるには? 転職支援の事業に従事しており、今後は中長期の継続利用や複数回利用が重要になってきます。その際、ユーザーの再利用意向やお勧め度といった顧客価値が重要です。しかし、短期業績や短期利益確保のプレッシャーがある中で、なぜ超短期の業績に結びつかないサービス変革にリソースやコストを投じるべきなのかをビジネス的視点で説得する必要があります。そこで、顧客価値とビジネスの接合点を強化し、このスキルを磨きたいと考えています。 再利用促進の具体策は? さらに、再利用促進が事業にどう影響を与えるかを重視しています。再利用を促進するための具体策を選定する際、その根拠や効果を財務的に説明できるようにしたいと考えています。現在、中長期利用のための企画書を作成中であり、その中で財務根拠や顧客ニーズを含む定量・定性分析を取り入れ、説得力を高める予定です。

データ・アナリティクス入門

仮説×分析で開く解決の扉

仮説立案の基本は? 仮説には、結論に至る仮説と問題解決に焦点を当てた仮説の二種類があり、問題解決の仮説では「What(問題は何か)」「Where(どこに問題があるか)」「Why(なぜ問題が発生しているのか)」「How(どうすべきか)」の順序で検証することが基本と学びました。 フレームワークは効く? また、仮説を立てる際には、3C分析(市場・顧客、競合、自社)や4P分析(製品、価格、場所、プロモーション)といったフレームワークの活用が有効で、これにより具体的かつ詳細な仮説を構築しやすくなると理解しています。 効果検証はどう? 現在、交通系ICカードで決済するとポイントが10倍になるキャンペーンの効果検証に取り組んでおり、決済回数や決済金額の増加などを評価指標としています。この分析に際しては、問題解決の仮説を立て、3C分析や4P分析を積極的に取り入れることで、データ分析の精度を向上させることを目指しています。 分析精度を上げるには? 所属部署では専門のデータ分析担当者がおらず、これまで独学で自己流に分析を行ってきました。今回学んだ仮説の立て方やフレームワークをさらに活用し、数値の取り方や検証方法を体系的に整理することで、分析の精度を一層高めたいと考えています。

戦略思考入門

商社マンが語る経済原理の実践法

戦略原則を学ぶには? 戦略やフレームワークを効果的に活用するためには、いくつかのステップを踏んで考えることが重要です。まず、戦略の原理原則やフレームワークを正しく理解することが必要です。次に、自社の状況を正確に把握し、その状況に適した戦略やフレームワークを活用することが求められます。 実践で何を見直す? 今回の学習で扱った規模の経済、範囲の経済、習熟効果、そしてネットワークの経済については、私自身既に知識を持っていました。しかしながら、これらを実際に適用する際には、自社の状況を正確に理解しないと、戦略の効果が十分に発揮されないことを改めて認識しました。 事業拡大のカギは? 私の会社は総合商社として、範囲の経済を活用しながら事業を拡大しています。新しい事業に投資する際、どの部分でどのようなシナジーが生まれるのかを的確に把握し理解することが重要だと考えています。 新規案件はどう進む? 新規事業開発案件では、各案件ごとに範囲の経済性を整理します。具体的なステップとしては、まず現在の事業内容を整理し、次に範囲の経済が活用できる部分を明確にします。その後、効果を分析し、戦略方針の説明書をドラフトとして作成します。そして、関係者からフィードバックを受けて最終的な方針を固める流れです。

クリティカルシンキング入門

問題解決を見据えた視点の磨き方

物事を客観視するには? 講座全体を通じて得た学びを振り返ると、まず客観的に物事を見る力が重要性を増していると感じました。また、視点や視座、視野の持ち方、そして問題を分解する方法についても多くを学ぶことができました。問題に直面した際は、適切な問いを立てることから始め、データの加工・可視化を行って分析し、解決策を見出しスライドを作成するというステップが有効であると理解しました。 運用変更の必要性は? さらに、変化に伴うアクションを決定する際には、システムや社内ルールの変更に応じた運用変更が不可欠です。その際には、なぜその運用変更が必要なのかを関係者に分かりやすく説明することが大切です。同時に、変化に応じたアクションが本当に必要かを問い、様々な角度から分析することが必要です。このプロセスを通じて、回答を常に疑いながら最善の解決策を見出したいと考えています。 効果的なプレゼンは? また、上層部へのプレゼンテーションでも得た知識を役立てたいと思います。今年度のKPI達成や課題の共有に際しては、受け手にとって効果的なプレゼンとなるよう、視野・視座・視点を意識した分析と資料作りを心掛けます。これにより、より理解しやすく、見やすい資料を作成し、効果的な情報の伝達を実現したいです。

戦略思考入門

戦略的視点で差別化を追求!

VRIO分析のメリットは? VRIO分析というフレームを初めて学ぶことができました。これは3Cに近い概念で、自社、競合、顧客の視点を持ちながら、さらに差別化ポイントや機会を整理するのに役立ちます。「戦略」を打ち出すために非常に有用であると感じました。 オフライン戦略はどう? 最近では、展示会やウェビナー、リアルセミナーなどのオフラインのマーケティング活動において、他社がさまざまな方法を試しながら顧客を獲得しています。自社は他社と比較して、開始のスピード感で遅れをとっている現状です。しかし、他社が必ずしも費用対効果を上げて成功しているわけではなく、試行錯誤の段階にあるようです。自社がこれを始める際には、成功のための方法や自社らしさの差別化を図り、どのように収益を生むかという視点を重視したいと考えています。 ターゲット設定の意義は? まず、施策ありきではなく、ターゲットを明確にすることが重要です。つまり、WHO、WHATを明瞭に定義した上で、HOWの整合性を整理したいと考えています。その上で、競合との差別化や自社の強みを活かした業務を展開していきます。まずは経営陣とともに、ターゲットの定義や自社の特徴、差別化ポイントを可視化し、目線を合わせて戦略と戦術を考えていきたいと思います.

戦略思考入門

顧客定義で切り拓く差別化チャレンジ

顧客定義はどうする? 差別化や集中などいろいろな施策がある中で、最も重要なのは「顧客」を誰と定義するか、そしてその定義を厳密に行うことだと理解しました。顧客像を明確にすることで、施策の効果が格段に向上すると思います。 環境と戦略はどう? 差別化施策を検討する際には、VRIOをはじめとする各種フレームワークを活用し、自社および周囲の環境を正確に分析することが必要です。そのうえで、リスクを踏まえながらも、複数の戦略を同時に実行できる組織の柔軟さが大切であると感じました。 顧客定義の共有は? 自分の所属するサポートチームにおいても、まず「顧客」が誰であるかを再確認し、その定義から導かれる優位性や差別化要因を自分なりに分析し、同僚と共有するよう努めています。現在のチーム体制も、顧客の定義に基づいて構築されているため、外部環境の変化や何がトリガーになるかについても常に注意を払っています。 多様な意見はどう? また、限られた情報だけに頼らず、少なくとも複数の視点や意見を取り入れることが重要だと実感しています。否定的な意見を受け入れ、フィードバックを正しく取り入れるために、自分自身の感情コントロールを心がけることが、結果としてより良い判断につながると感じました。

データ・アナリティクス入門

分析で見える課題の本質

視点で課題を探る? 現状を分析する際、what、Where、why、howの視点に沿って整理することで、取り組むべき課題が明確になります。このアプローチにより、現実の問題点が見えやすくなり、解決すべきポイントを正確に把握できます。 手法で何が見える? また、ロジックツリーやMECEの手法を活用する際は、単に細分化することにこだわるのではなく、課題解決に有用な切り口になっているかどうかを検討することが重要です。具体的な視点でアプローチすることで、効率的な分析が可能となります。 計画とのギャップは? さらに、売上要因の分析においては、まず課題が計画との乖離から生じているのか、あるいは目指すべき姿とのギャップから発生しているのかを明確にする必要があります。その上で、ロジックツリーやMECEを活用し、分析すべき要素を網羅的に洗い出すことで、後戻りのリスクを低減できると感じました。 次の一手は何か? これまでの分析は、小さな仮説を立てながら進め、随時追加の仮説と分析を行ってきました。今後は、分析に着手する前にロジックツリーとMECEを用い、what、Where、why、howというステップに沿ってしっかりと検討することで、より効率的かつ効果的なアプローチを目指していきます。

リーダーシップ・キャリアビジョン入門

キャリアアンカーで未来発見

自分の価値観は何? キャリアアンカーの考え方は、自己分析や他者との対話を通じて、自分がどの価値観を大切にしているかを確認できる点が魅力的です。これは、直接的に職業と結びつくわけではありませんが、それぞれの仕事の中で何を重視していくかを示してくれます。 環境変化のヒントは? また、キャリアサバイバルは、外部環境の変化―例えば、政治や経済、社会文化、技術など―に対応しながら、自分のキャリアをどのように描いていくかについて考える手法です。自分のやりたいことがはっきりしない場合でも、環境の変化に着目することで、次に何をすべきかのヒントが得られると感じました。 チームはどんな人? チームメンバーにどのようなキャリアアンカーがあるのかを把握することは、効果的なコミュニケーションを図る上で非常に重要だと思います。興味があるメンバーには自己診断をお願いし、診断を行わなくても日常の会話の中で8つの属性に着目することで、メンバーの特性や方向性が見えてくるのではないかと考えています。 全体戦略をどう考える? さらに、キャリアサバイバルの視点は、チーム全体がどの方向へ進むべきかを考える際にも有効です。今後、チームの戦略を練る際に、これらの考え方を積極的に取り入れていきたいと思います。

データ・アナリティクス入門

MECEで分析の精度と効率をUP!

MECEの重要性を再認識 MECE(Mutually Exclusive, Collectively Exhaustive)という概念を知ってはいたものの、長い間実務で意識して使ってこなかった。そのため、What, Where, Why, Howをしっかりと整理しながら進めないと、方向性を見誤る原因となり、結果として漏れが多い分析で無駄に時間を消費することになってしまう。 実務でのMECE活用法 こうしたミスを防ぐには、実務を進める際に常にMECEを頭に浮かべるトレーニングが必要だ。特に仮説を立てる場面が多く、成果が出ない原因になりがちである。特に営業戦略を立てる際には、一般消費者向けのプロモーション内容が的外れになる可能性があるため、プロセスの重要性が極めて高い。 書き出しで得られる効果は? 動画でも言及されていたように、文字として落とし、ビジュアル化することは重要だ。書き出すことで漏れや重複を回避し、整理が進むはずだ。ロジックツリーは何年も使ったことがないが、時間の問題にもなるものの、逆に簡潔化され、スピードが上がるプロセスになるかを試してみたいと思う。また、その過程で「目的は何か」を見失わないようにし、表面的かつ形式的にならない工夫を取り入れたいと考えている。

クリティカルシンキング入門

偏り超え!広がる学びの輪

偏った思考に気づく? 私たちの思考は、ついつい偏りが生じがちであり、その偏りに気づかないままだと、新たな視点や他の考え方に気付くことが難しくなります。こうした偏りを解消するためには、問題を分解して考える方法が効果的です。しかし、単に分けるのではなく、MECE(漏れなくダブりなく)を意識することが大切です。また、具体的な視点と抽象的な視点を行き来することで、思考の幅が広がります。まずは自分自身の考えを客観的に捉える癖をつけることが重要だと感じています。 仮説はどう進む? お客様への提案を準備する際には、自分なりの仮説を立てるプロセスが役立っています。その際、経営状況や外部環境について十分に把握・分析し、仮定した課題を基に提案内容を練り上げることが必要です。提案を行う相手は、お客様だけではなく、上司や審査部、経営層も含まれるため、説得力ある内容を伝えるにはクリティカル・シンキングが不可欠です。 自己分析は十分? 改めて、自分の思考を客観的に見る習慣を持つことが大切です。自分自身の考えに疑問を投げかけ、より深く掘り下げる姿勢は、これまで「これ以上考えても意味がない」と判断していた事案に対しても、新たな切り口を見出し、柔軟にアプローチするための粘り強さを育む助けとなります。

データ・アナリティクス入門

データ分析で社会課題を解決する心得を学ぶ旅

分析の本質を学ぶ意義とは? 講義開始直後から、分析の本質について明確に示されるので、動画の解説が頭にスラスラと入りました。まず、分析の本質は「比較」であり、適切な対象を比較することが重要です。迷ったときは、分析の目的に立ち返ることが大切で、その際にはデータに偏りがないかどうか、「生存者バイアス」に注意することが求められます。このように、6週間の講座を通じて、最も重要な「心得」を学ぶことができました。 仮説設定の流れをどう進める? 私は、社会課題に対する「仮説」をもとに、行政などのオープンデータを分析し、数字的な事実を裏付ける仕事をしています。今回は、体系的にデータアナリティクスを学ぶことで、仮説設定や分析対象の選定をスムーズに行いたいと思いました。 データ分析の実践ステップとは? 具体的には、以下のアクションを実行しようと考えています: - データ分析について、チーム内に基礎的な知識を共有する。 - チームメンバーが取り組んでいる社会課題に関連するオープンデータを収集する。 - 仮説を洗い出し、それを裏付けるための数字を設定する。 - 適切な比較対象をピックアップする。 このような手順を通じて、社会課題の解決に向けた効果的なデータ分析を進めていきたいと思います。

データ・アナリティクス入門

問題解決の4ステップで仕事が変わる

問題解決のステップを学ぶ 問題解決には4つのステップがあることを学びました。これらのステップは以下の通りです。 1. What:問題の明確化 2. Where:問題箇所の特定 3. Why:原因の分析 4. How:解決策の立案 このステップで仮説を立てて思考することで、以下の効果が期待できます。 1. 検証マインドの向上と、高まる説得力 2. 関心、問題意識の向上 3. 判断や行動のスピードアップ 4. 行動の精度向上 計算ミスをどう防ぐ? 例えば、給与や退職金の計算業務では、計算ミスが発生することがあります。その際にはまず、正しく再計算することが最優先されますが、今後同様のミスを防ぐためには原因を特定し、再発防止策を考え実施する必要があります。これを行うためには、問題解決の4つのステップが必須となります。 チームへの意識定着を図るには? 自分自身だけでなく、他のメンバーも問題解決の4つのステップを意識して思考できるように指導することが必要です。そのために、今回学んだ内容を毎週開催するチームミーティングで共有し、日々の業務の中でもメンバー一人ひとりがしっかり意識し自分のものにできているかを質問を投げかけることで確認し、チーム全体に定着させていくつもりです。

「分析 × 効果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right