戦略思考入門

実践で磨く!経営戦略の切り札

理論と実践のギャップは何か? 総合演習を通じて、座学で学んだことを実践することの難しさを改めて感じました。理論的には理解しているつもりでも、実際のケースに適用しようとすると上手くいかないことがあります。例えば、タクシー会社のケースではPEST分析を試みましたが、そのスケールの大きさからこのケースには適していないと感じました。その結果、もやもやとした感覚が残りました。 分析を活用する方法とは? 現在、私は出向中の現地法人において市場環境を調査し、分析を進めています。そして、これに基づいた明確な経営戦略や営業戦略の立案が有効であると考えています。また、SI事業に関わっている関係で、規模の経済をどのように活用するかについて再考し、企業の利益体質を強化したいと思っています。 効果的な戦略立案に向けて すでにVRIO分析を行ってその有用性を実感しましたので、今後の経営戦略や営業戦略の立案には3C分析やSWOT分析を実務に活用したいと考えています。現在、会議用の資料を作成中であり、これらの分析手法を直近の実務で是非活かしたいと思っています。

クリティカルシンキング入門

イシューを極める論理の道

今の問いの意味は? イシューとは、今ここで答えを出すべき問いのことであり、問いが何であるかを常に意識し、組織全体でその方向性を共有できるよう努める必要があります。 具体化はどう行う? イシューの特定は、問いを具体的な形に落とし込み、一貫して保持することが基本です。また、ピラミッド・ストラクチャーを用いる場合、まずイシューを明確にしてから、論理の枠組みを考え、主張を適切な根拠で支えるというステップが不可欠です。 問題と対応策は? 担当プロジェクトで問題が発生した際には、まずイシューを特定し、その問題に対してぶれず対応策を検討したいと考えています。同様に、事業計画の立案時にも、目標実現に向けた問題点を洗い出し、解決策を提示する上で非常に効果的だと思います。 納得できる資料は? さらに、問題点を徹底的に洗い出し、要素分解や数値分析を実施することで、相手が納得しやすい見やすい資料を作成することが重要です。また、部下や上司、顧客との打ち合わせの際には、目的である問いを明確にし、議論がぶれないよう意識することが大切だと感じています。

データ・アナリティクス入門

データ分析で業務効率化の新発見!

データ分析で新視点を得るには? データ分析とは、比較を行うことで新たな視点やアイデアを引き出すことが可能であると学びました。同じ基準や条件を用いることで効果的に分析ができ、新しい発見に繋がることが特に印象的です。 効率化への第一歩は? これまでの仕事では、何となくデータを用いながらプロジェクトの進捗を管理していましたが、新しい職場では積極的にデータの可視化を取り入れ、業務の効率化を図りたいと考えています。以前は過去のデータより直近のプロジェクトの状況にのみ焦点を当てていました。 なぜデータ可視化が重要? 日常業務の中で、業務上必要がない場面でもデータを可視化することは重要だと考えていましたが、既存のシステムやBIツールに頼りがちでした。しかし、自ら業務プロセスをデータ化することが、業務のパフォーマンス向上に繋がるのではないかと考えています。 ダッシュボード作成スキルをどう磨く? 現在は過去のプロジェクトマネジメントの経験を活かし、会社の既存のダッシュボードを一から作成するスキルを身につけるために勉強を続けています。

クリティカルシンキング入門

データ分析で見つける課題のヒント

課題をどう発見する? 本講座で、課題(イシュー)を特定するプロセスについて学びました。これまで、最終的に解決すべき問題が何であるかを自分の先入観や仮説だけに頼って考えていたように思います。今後は、各種データを様々な角度から分析し、その結果をもとに課題を特定する作業に慣れる必要があると感じました。 販売計画をどう分析? 具体的には、ソリューション販売計画の策定に取り組む際、この手法を活用しようと考えています。たとえば、ある製品について「売る」「売りたい」といった単一のキーワードだけではなく、現状や市場、価格など複数のキーワードを抽出してデータ分析を行い、さまざまな切り口からイシューを探索する方法です。 意見交換は効果的? さらに、大きな課題に対しては、課題を細分化したキーワードに分解し、各キーワードに対応するデータを揃えることで、より具体的なアプローチが可能になると実感しました。加えて、同僚の意見を積極的に求め、ディスカッションを通じて個人的な偏りを排除することが、より客観的にイシューを特定するために重要だと感じています。

データ・アナリティクス入門

数字に秘めた学びの軌跡

データの真意は何? 実際のデータをただ眺めるだけでは、その背後にある示唆を十分に引き出すことは難しいです。データの意味を正しく理解するためには、適切な分析手法を用いる必要があります。 率の活用でどう変化? 単純な数字の比較だけでは良し悪しが明確にならない場合もあるため、「率」という指標を活用することで、より深い理解が得られることがあります。 体系的整理は有効? 問題の原因を探る際には、直感だけで原因を挙げるのではなく、体系的なフレームワークを使って整理することが効果的です。この方法により、抜け漏れなく各要素を洗い出し、論理的な仮説を立てやすくなります。 最適案の選び方は? また、複数の選択肢から最適な案を選ぶためには、コストや効果、運用負荷といった各比較軸に重みをつけ、数値化する手法が重要です。これにより、客観的な評価が可能になり、意思決定の質が向上します。 業務判断はどうなる? 日常業務においても、フレームワークや評価軸を意識して活用することで、論理的かつ効率的な判断を行うことができるようになります。

クリティカルシンキング入門

データ分析で見える!戦略立案の新視点

データ分解の重要性とは? データを分解することで、事象の原因について仮説を立てやすくなると理解しました。ただし、分解方法を誤ると要因が見えにくくなる場合があるため、複数のパターンで試行して最適な方法を見つける必要があります。また、分解には漏れなく重複なく全体を分解していくことが重要です。さらに、異なる切り口で分解することで、要因を特定しやすくなることも判明しました。 顧客分析で見つかるボトルネック 新規顧客と既存顧客に分けて、受注に至るまでの各プロセスにどのようなボトルネックがあるのか分析したいと考えています。同様に、業種や規模、地域といった異なる視点からも分析を行い、どこにアプローチをすれば最大の効果が得られるか仮説を立て、実践してみたいです。 効果的な営業戦略を立案するには? 営業戦略を立案する際には、まず業務プロセスを見直し、データを取得できるようにする必要があります。アプローチの回数や提案の回数、対面かWebかといった各種データを分析可能にするため、業務プロセスの改善から着手する必要があることが分かりました。

データ・アナリティクス入門

問題発見力を鍛えよう!課題形成の基本

問題発見力を高めるには? 問題を発見し、その問題点を把握する力、すなわち問題発見力が重要です。ありたい姿と現状のギャップを見える化し、課題形成力を高める必要があります。現状を定量的・定性的に把握するためには、数値化や見える化が欠かせません。目的や仮説をイメージしつつ、行ったり来たりしながらも、ゴール目標に向けて時間軸を持って到達することが大切です。 採用市場で競争優位を得る方法は? 採用市場の変化においては、問題発見と課題形成のプロセスが重要です。この過程で優先度や重点化の思考を入れ、重要性や緊急性の観点からもデータを分析します。それによって、競合他社との優位性を評価しながら、効果的かつ先進的な人材獲得の取り組みを推進することができます。 幸せのため働く姿勢の意義は? 「誰かの幸せのために、まっすぐはたらく」という考え方を体現し、シンプル、オープン、フェアの観点から積極的に採用市場を分析します。将来の基幹人材の獲得を目的に、ゴール(6月)から逆算してセグメントごとの実行計画を立案・推進することが求められます。

データ・アナリティクス入門

比較と分析で拓く学びの未来

目的は明確ですか? 分析を始めるにあたって、まず目的と最終ゴールを明確に設定することが重要です。これにより、次に行う比較対象の設定や分析手法の習得がスムーズに進み、上席が判断しやすい情報を提供できるようになります。 比較で何が分かる? 分析の本質は比較にあり、対象を明確にすることが成功の鍵となります。現状では、課題に対する意識はあるものの、十分な分析ができていなかったり、仮説はあるものの分析に着手する時間が取れないという状況が見受けられます。しかし、単に課題を解決するのではなく、事業全体の改善を目指し、情報公開や信頼獲得、認知拡大、ブランディングへとつながる流れを作ることが求められています。 分析の仕組みは? そのため、まずは言語化や情報整理、データ収集と集約を丁寧に行い、その上で効果的な分析を実施する仕組みを確立する必要があります。私のミッションは、組織内の情報を安全に集約・整理し、課題や仮説を明確にした上で、比較対象となる市場の情報と合わせた総合的な分析を行い、意思決定のために適切な報告体制を整えることです。

データ・アナリティクス入門

数字と仮説で描く成長ストーリー

実践と検証はどう感じた? ライブ授業では、これまで学んできた内容の復習と実践演習ができた点がとても良かったです。データ分析においては、単純に数字を眺めるのではなく、比較を用いてしっかりと検証し、問題解決のプロセスに沿って取り組むことの大切さを実感しました。また、仮説を立ててからデータ収集を行い、やみくもな分析ではなく、数字の根拠に基づいたストーリーを構築する重要性を改めて認識しました。 施策はどう整理する? 今年度のマーケティング施策の振り返りにおいては、まず仮説をしっかりと立て、その後に問題解決のプロセスに沿って必要なデータを収集し、分析を進めています。さらに、来年度の施策を検討する際も、予め仮説を整え、後でデータ分析がしやすい状態で施策を実施する計画です。 仮説と比較で何が判明? 現在、各メンバーに仮説の策定を依頼しており、分析に必要なデータを収集する段階へと進んでいます。集めたデータを比較することで、成果が出た施策の要因や、あまり効果が現れなかった理由について、具体的な考察を進めていく予定です。

データ・アナリティクス入門

データ分析が拓く新たな可能性

比較の重要性は何か? 分析の本質は比較にあります。感情に左右されず、数字をそのまま受け入れて冷静に考えることで、解決策が見つかるかもしれません。主観的な感想に基づく判断は間違いやすいので注意が必要です。 適切な比較対象の選び方 適切な比較対象を選ぶことも重要です。問題に一方的に集中するのではなく、異なる要因からも分析を進めることで、全体的な状況を把握することが可能です。同じ条件でAが存在するかどうかを確認するのが理想ですが、現実にはこれまでの数字と多様な理由が絡んできます。この単科講座を通じて、可能な限りの状況を研究し、関連する要因を特定して、効果的な解決策を考えるスキルを身につけたいと思います。 データ分析をどう活用する? これまでの現場対応では即応的に問題を解決してきたかもしれませんが、今後はデータ分析を活用し、理論的なアプローチを用いることで、接遇技術をより効率的に改善できると考えます。その場で「できない」と言い訳をするのではなく、選択肢を提示することで、より良い結果を導き出せるのではないでしょうか。

クリティカルシンキング入門

データ分析で効果的な戦略を探るコツ

課題をどう掘り下げる? 根本的な課題を明らかにしなければ、一時的な対処で終わってしまい、効果的な対策が難しくなります。そのためには、データを活用し、データの切り分けにも注意を払って、直面する現状を把握することが重要です。原因を追及し、適切に根本的な課題を特定できれば、効果的な対策を考えることが可能です。 売上課題を探る? 売上の分析においてもデータ活用が求められます。次にどういったターゲットを狙って売上を拡大していくのか、現在の課題は何かを探るために利用します。売上を顧客グループごとに切り分けることで、顧客数に課題があるのか、あるいは顧客単価に問題があるのかを特定し、それに応じた戦略を立てることが重要です。 戦略と安全はどう? どのように売上を伸ばしていくのか、どのような対策をとるのかについては、自己分析による提案が求められます。また、ITセキュリティのトラブルが発生した際にも、問題の所在を一つ一つ切り分けて確認します。特に、複雑に絡み合ったケースであっても、それを混ぜて考えないようにすることが重要です。

クリティカルシンキング入門

MECEで業務効率アップ!育休復帰計画

MECEの種類って何? MECEの種類には、大きく分けて層別分解、変数分解、プロセス分解の3種類があり、それぞれの分解方法を使い分けることが重要だと感じました。これらの方法を試すことで、自身の分析に最も適した分解手法を見つけることができると学びました。 クラウド相談で何が分かる? 私は、自分の業務でクラウド利用相談においてこの手法を活用できるのではないかと考えています。利用相談の内容を分解することで、利用者が抱える本質的な問題を分析する際に有効だと感じました。特にプロセス分解を用いることで、どのプロセスに問題があるのかを特定し、迅速に問題解決に結びつけることができると考えています。 復帰後の活用は? 来月から育児休暇からの復帰を予定しており、クラウド利用相談でこの手法を活用したいと計画しています。相談内容をプロセス分解し、問題の本質を把握できるように努めます。まずは相談者が何を望んでいるのか全体像を把握し、その中でどこに問題が発生しているのかを分解して特定し、より効果的に対処したいと考えています。

「分析 × 効果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right