データ・アナリティクス入門

思考の質を高めるMECEとMICE活用法

MECEの考え方とは? MECEの考え方は、切り口を重複させずに漏れなく設定することが重要です。どのような切り口が最適かを判断するためには、高い感度が求められます。これに関しては、分析の経験を積むことや、多方面からの意見を聞くことも必要と感じています。 ロジックツリーの活用法 ロジックツリーについては、論理的思考を活用することで、適切な判断ができるようになります。 MICEの活用には何が必要? MICEの考え方は、実務に役立ちそうで、特に顧客分析など日常的な業務での活用チャンスが多いです。「重複なく漏れなく」を実現することはその通りと感じつつも、切り口の設定によって重複を避けることが難しい場合もあり、その点をどのように克服するかが課題だと考えています。 BI分析へのMICEの導入 業務で作成しているBI分析において、MICEの軸を取り入れることにしました。切り口については様々な角度から実施し、どの分析が効果的であるかを検討します。また、ロジックツリーについては、既にパイプライン分析で似たことを行っていますが、改めてロジックツリーを用いた分析も進めてみようと思います。

データ・アナリティクス入門

データ分析で見えた改善のヒント

目的と比較の重要性を認識 実務では無意識で実践していましたが、分析においては目的と比較が重要であることを再認識しました。「何を伝えたいのか」によってグラフの作成方法を考える、という視点は今後意識していきたいです。また、分析において要素に分解することは大切ですが、目的が明確でないと細かく分解すること自体が目的化してしまう可能性があるため、注意したいところです。 分析結果を施策にどう活かす? 弊社サービスの利用率や更新率を高める施策を考える上で、ユーザーデータの分析における学びを活用したいと思います。具体的には、「利用率を高める」ことと「更新率を高める」ことという目的に分けて、ユーザーの利用データや解約時アンケートなどの各種データから必要な項目を抽出し、分析します。 チームとの効果的な議論をどう行う? 毎週のチームメンバーとのミーティングでは、学んだことをメンバーにアウトプットし、チーム全体の視座を揃えるように努めます。特に、「利用率を高める」「更新率を高める」ためのデータ分析をメンバーと協力して行い、効果的な施策を導き出せるよう、有意義なディスカッションを重ねていきたいです。

デザイン思考入門

ワクワクが生む本当の学び

授業モチベ低下の理由は? 現在の業務では、学生の学業に対するモチベーションの低さが大きな課題となっています。授業アンケートなどの定量分析だけでは、学生の本音を把握するのは難しいため、フランクな環境で直接インタビューを行ったり、授業課題に取り組む姿を観察するなど、定性分析の手法を取り入れることが効果的ではないかと感じました。 内発性向上は可能? 実際に、学業に一生懸命取り組む数名の学生に「なぜそれほど頑張れるのか」と尋ねたところ、ほとんどの場合「単位を取りたいから」や「良い成績を取りたいから」といった外発的動機づけによる回答が返ってきました。これは、彼らが自らの内発的な動機、つまり学業に対するワクワク感の醸成ができていないことを示しており、強制ではなく自主的に学びを楽しむ環境作りが必要であると改めて実感しました。 課題の本質はなんだ? また、「解決すべき本質的な課題を明確にすること」ができれば、課題解決の半ばは達成したと言えるでしょう。しかし、インタビューや観察から本質的な課題を的確に抽出するのは容易ではなく、何度も試行錯誤を繰り返しながら進めていく必要があると感じています。

マーケティング入門

顧客の痛みを解消する分析力の重要性

インサイトとペインポイントの重要性とは? ニーズはポジティブな表現であり、さらに良くしたいという欲求もありますが、我慢が可能です。一方で、顧客のインサイトにはネガティブな要素が多く、損失や痛みの解決に繋がるものであれば、需要が高いと言えます。特に、ペインポイントというすぐにでも解決したい事柄に対する解決の重要性を学びました。 明確な区分が生む提案力 ウオンツ、ニーズ、インサイト、ペインポイントを明確に区分して、提案・分析を行うことが大切です。今回、ネガティブな事柄の解決が顧客にとって重要であるという点に納得できたので、この考え方をしっかりと理解し、深い分析に繋げていきたいと思います。顧客調査をしても、基礎知識が曖昧だとズレが生じるため、効果のある事柄に時間を充てられるよう努めたいです。 新規事業提案に必要な習慣は? 将来的には新規事業の提案ができるようになることを目指し、常に考える習慣をつけることが大切です。必要な時に具体的に文言化できるよう具体的なインサイトやペインポイントに繋げるために、調査力と納得感、自分事として考え、アウトプットする習慣を身につけていきます。

データ・アナリティクス入門

数字と仮説のドキドキ分析

どのデータが最適? 分析とは「分析は比較なり」という考えを基本に、どのデータを使い、どう加工し、何を明らかにするかを吟味する作業です。各種データに適した加工方法やグラフの見せ方が存在するため、やみくもに加工するのではなく、目的に合わせた手法を採用することが大切です。 目的と仮説は何? ビジネスデータの分析においては、データに取りかかる前に必ず「目的」と「仮説」を明確にする必要があります。プロセスは、まず具体的な仮説の設定から始まり、既存や新たなデータの収集、集計や代表値の算出、さらにはグラフを用いた加工を経て、聞き手が一目で理解できる形にまとめ上げるという流れで進められます。数字に基づくストーリーづくりが成功の鍵となります。 3C視点で何が見える? また、1つの事象を分析する際には、シンプルな課題であっても市場・競合・自社という3Cの視点を用いることで、当初は見落としていた要素が浮かび上がる可能性があります。意識的に3C分析に基づいて仮説を抽出することは、グループワークを通じて他者の視点を取り入れ、個人の思考力の限界を補いながら精度を高める効果的な手法と言えます。

データ・アナリティクス入門

ビジュアルで味わう分析の面白さ

平均の意味は? 複数の平均(単純、加重、幾何)をビジュアルで理解できたのは大変参考になりました。計算自体は表計算ソフトを使用すれば難しくないものの、イメージをしっかりと思い出し、目的に合わせて正しく使用することが大切だと感じます。また、今まで漠然としか捉えていなかった標準偏差も、今後、平均とデータのばらつき具合を説明する際に大いに活用できると考えています。 分析方法はどう? 膨大な顧客情報や生産実績の分析においては、単純平均や幾何平均を用いた有用な分析方法があると実感しました。売れ行き製品の傾向をグラフで表現する際、散布図の利用も面白い発見です。これまで棒グラフによる比較が中心でしたが、何をアピールしたいのかを一歩深く考え、見せ方を工夫する必要性を感じさせられました。 データ活用はどう? 所属する営業グループ内でも、データ集計方法や見せ方に関して工夫が求められています。これまで、従来のやり方を盲目的に踏襲するか、各自の感覚に頼る方法に偏っていたため、私がリーダーとして理論に基づいたデータ抽出とグラフ選択を整理し、より効果的な活用方法を提示していきたいと思います。

戦略思考入門

営業戦略を磨く!フレームワーク活用の魅力

フレームワーク活用の効果は? 3C、SWOT、PESTのフレームワークを活用することで、戦略の検討を網羅的に進められることが分かりました。これらの分析結果を基に、自社のリソース状況や競合の動向を考慮し、優先順位をつける重要性を認識しました。この優先順位付けは会社ごとの特性や経営陣の考えが反映されやすく、企業の特徴を示す部分でもあるため、今後の企業分析において注目していきたいと感じました。 営業戦略には何を意識する? 私はインドネシアで営業責任者を務めており、営業戦略を立案する機会が多いです。その際、上記のフレームワークを活用して事業環境や経営戦略を整理し、説得力のある営業戦略を立案したいと考えています。また、顧客ごとのアカウントプラン作成時にも3Cを意識し、戦略的に営業を進めていくつもりです。 会議に向けた準備とは? 来月末の戦略会議に向けて、3C、SWOT、PESTを利用した環境分析を自分なりに行い、それを資料にまとめたいと思います。さらに、営業メンバーとのミーティングでは、3Cを意識して顧客開拓の方向性を示す会話を心掛けていきたいと思います。

データ・アナリティクス入門

データで解く! 成果を上げる実践術

理解を深めるためには? 自分が「なんとなく分かっていた」と思っていたことも、改めて問われると言葉に詰まってしまうことがあります。それは実際には十分に理解できていなかったからかもしれません。分析を行う際には、各要素を比較し、言語化することを意識する必要があります。普段の研修では聞き手に回ることが多かったため、アウトプットするのは不得手でしたが、この学習を通じてしっかりと身につけたいと思います。 データ活用の戦略は? 業務実績データから得られる課題抽出や傾向の把握、戦略立案などに活用したいと考えています。特に、各支社・拠点におけるデータを活用し、問題解決に結びつけていきたいです。また、意思決定の過程では、常に数字に基づいて話すことを徹底し、業務で成果を上げていくことを目指します。 効果的な比較分析法は? データ分析においては、比較分析を徹底する必要があります。それに伴い、できる限り多くのデータを集めることが理想ですが、労力も相当なものになるでしょう。無駄な作業にならないよう、目的やアウトプットイメージ、期限、制約をしっかりと言語化し、伝えることが重要です。

データ・アナリティクス入門

現状分析で課題解決のアイデア発見!

データの見える化で何が得られる? 常にデータを見える化することで、問題解決のアイディアが生まれやすくなると感じました。例えば、業績の課題に対して財務諸表を見て問題点を見つけたり、ロジックツリーを書いて選択肢を並べてみることは効果的だと思います。 損益以外の問題も解ける? 私は業績管理の部署にいますが、損益に問題があればその問題点の把握の仕方はある程度定型化されてできるのではないかと思っています。しかし、損益以外の業務における問題の把握や発見は難しく、挑戦してみたいと考えています。 まず、あるべき姿の候補をいくつか出し、それに対してギャップがある部分を洗い出します。そして、その要因となるものをロジックツリーにして書き出します。 ギャップをどう埋める? あるべき姿の列挙として、他の事業やプロジェクトから現在の部署に足りていない問題を見つけてみます。次に、ロジックツリーを使って現状とのギャップを可視化し、見えていない部分を明確にします。最後に、定量化を行い、どの項目についてギャップが大きいのか、どの項目に取り組むとあるべき姿に達成しやすいのかを整理します。

データ・アナリティクス入門

効果的な問題解決のための4ステップ攻略法

問題解決の基本ステップとは? 問題解決とは、「あるべき姿とのGAP」「ありたい姿とのGAP」を埋めることだと学びました。また、具体的なアプローチとして、解決策の立案(How)から入るのではなく、まず問題の明確化(What)、問題箇所の特定(Where)、原因の分析(Why)、そして解決策の立案(How)という4つのステップを踏む必要があることを理解しました。 顧客との関係構築に役立つステップとは? 顧客との関係構築においても、「ありたい姿」を設定し、この問題解決の4ステップを適用することで、効果的に思考を進められることを学びました。例えば、特定の顧客を対象としたアカウントプランの策定や、顧客満足度調査に対する分析やフィードバックなどに、この手法を活用したいと考えています。 フレームワーク活用のポイントは? 問題解決の4ステップを正しく実践するためには、フレームワークを意識し、問題の特定、原因分析、対策立案を論理的に行うことが重要です。問題の認識、原因の分析、対策の立案において、誤った捉え方や抜け漏れがないよう、フレームワークを活用していきたいと考えています。

データ・アナリティクス入門

営業予測を刷新する新アプローチ

フレームワークの効果的な活用法とは? 今回の学びの中で、フレームワークのツールとしてロジックツリーとMECEが紹介されました。ロジックツリーは課題を細分化し、発見しやすくするための手法であり、MECEは問題をもれなく、ダブりなく整理するために必要な概念です。それぞれは様々な場面での分析に利用されますが、今回の復習を通じて今後の活用に向けた理解を深める機会となりました。 営業予測の新アプローチを試すには? 営業予測を行う際には、これまで直感に頼った予測を立ててしまいがちでしたが、今後は課題を分類し、分析した上で予測を立てることを心掛けたいと考えています。この新しいアプローチにより、異なる視点での分析が可能となり、より精度の高い営業予測が期待されます。 MECEを使った分析で得られるものは? これまでは同じ視点でデータを取り出して分析を行っていましたが、今後は課題を洗い直し、顧客の職種や規模、場所など、さまざまな角度からMECEを意識した分析を進めていきます。これにより、売り上げを伸ばすための施策のヒントを得られ、より具体的な情報収集と活用が期待されます。

戦略思考入門

失敗談から学ぶ成功への道筋

なぜ基礎知識は必要? メカニズムを学ぶには、基礎知識と失敗談の学習が必要だと感じました。基本的には成功に至る道筋がありますが、重要なのはリスク要因をしっかりと文言化することです。成功は様々な要素と偶然が絡むことが多く、要因を完全に特定するのは困難です。しかし、失敗を経験から学ぶことは可能です。失敗した要因は特定しやすいと考えられるため、その学びは貴重です。 価格効果をどう考える? また、差別化を考える時と同様に、価格の効果性を最大化することも重要です。インフレの時代には、価格を無視した施策だけでは顧客満足を得にくいため、新規業務やBPOにおける収益化を考える際に、その知見を活用することが重要です。価格とメカニズムを深く分析し、根拠のある提案を行うことを心掛けましょう。 成功談から何を学ぶ? まずは成功者の成功談や失敗談を本から学び、知見を広げることが大切です。最近では動画でも多くの情報が得られますので、常に最新の情報をインプットし続けることが重要です。このような知見の積み重ねが、意思決定者へのプレゼンテーションや提案の質を向上させることにつながります。

「分析 × 効果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right