データ・アナリティクス入門

数字が紡ぐ学びの軌跡

データ加工はどう整理する? データ加工においては、数値に集約して捉える、目で見て把握する、そして数式に集約するという3つの方法を基本としています。 分析はどう進む? 分析の際は、まず目的(問い)を設定し、仮説を立てたうえでデータ収集・検証を繰り返すプロセスが基本です。さらに、インパクト、ギャップ、トレンド、ばらつき、パターンの視点と、グラフ、数字、数式というアプローチを組み合わせることで、多角的に情報を捉えています。 数値管理はどう考える? 具体的な数値の扱いとしては、代表値に単純平均、加重平均、幾何平均、中央値を用い、散らばりは標準偏差で表現します。ただし、平均値は外れ値の影響を受けやすいことに注意が必要です。 セグメントはどう見る? また、キャンペーンメールのデータと顧客データを用いた分析では、どのセグメントにどのような傾向があるかを明確にし、それをもとに有意差が見込める仮説を立てる際に、プロセス・視点・アプローチの組み合わせが効果的であると感じました。 検証の深め方は? 以前は、キャンペーンメールと顧客データを分析する際、インパクト、ギャップ、トレンド、ばらつき、パターンといった視点に十分意識を向けていなかったため、今後はこれらの視点をしっかりと取り入れながら仮説を立て、より精度の高い検証を行っていきたいと考えています。

クリティカルシンキング入門

問い直しで見つけた成功のヒント

Issueの意義は? Issueを特定することの重要性に気付かされました。問いの形で考え、具体的な方針を導く過程は、ディテールに偏りがちな場合でも、常にIssueに立ち返ることで軸がぶれないようにする試みとして大きな学びとなりました。チーム内でしっかりと共有することで、見失いがちな問題に継続して向き合う大切さを実感しています。 戦略共有はどう? また、営業チームへの戦略・戦術の共有において、現状の課題分析が今後のプロモーション活動に大きく影響することが理解できました。課題を再認識した上で、正しい方向性で次のアクションを進めるための確認作業が、ビジネス展開において不可欠であると感じました。 リスク評価はどう? さらに、プロジェクトマネジメントの現場では、プロモーションや製品導入のリスク評価の意義を再確認しました。トラブル発生時に備え、現段階からIssueを明確にし、そこからロジックツリーを作成する手法は、最適な対応策を導く上で非常に有効だと学びました。 見直しの必要は? 最後に、プロモーション全般の見直しに関して、当初計画していた内容と実際の課題(Issue)やアクションとの紐付けを再検証する必要性を実感しました。タイムラインの調整や、万が一のトラブル時のリスク評価を意識することで、より効果的なプロモーションを展開できると考えています。

データ・アナリティクス入門

目的明確!整理から始める本気の分析

比較はどんな意味? 「分析は比較」という考え方は、これまでさまざまな講座で耳にしていましたが、「比較する対象を見出す」という点については、あまり深く考えたことがありませんでした。そのため、今回の学びを通じて、まずは「どんな目的で分析を行うのか」や「ありたい姿」と現状のギャップを整理(言語化)することに意識を向け、分析のスタート地点としてしっかりと理解を深めたいと考えています。 現状整理はどう進む? 業務では、依頼主から提示される課題に対して、その課題=「在りたい姿」と「現状」の整理が不十分なまま、すぐにデータに取り掛かることが多くありました。そのためか、「こっちだったかも?」や「なんかズレてきている?」という不安にかられ、進めていた分析で手戻りが発生することも多々ありました。そこで、データに触れる前に、一度しっかりと整理してから進めるべきだと改めて感じています。 新規案件の見通しは? 今回、新規の案件にあたっては、以下の点について整理しながら進めていく予定です。まずは分析の目的を明確にし、ありたい姿を言語化します。次に、現状の把握と、現在手元にある指標の洗い出しを行い、ありたい姿とのギャップを埋めるために必要なデータを整理します。こうしたプロセスをメンバー間で共有し、認識を合わせながら進めることが、より効果的な分析につながると期待しています。

クリティカルシンキング入門

数字の裏に隠れる小さな真実

数値分解の意義は? 数値を細かく分解・加工することで、見落としがちな示唆を得る可能性があります。また、数値はグラフ化することで、より分かりやすく伝えることができます。分析の際は、「誰が」「いつ」「どのように」という多角的な切り口を用意しておくと効果的です。 分解作業の狙いは? 今回のワークは、与えられた数値をどのように分解するかに焦点を当てました。アンケートの設計・配信・分析といったタスクにおいては、どの切り口でどのような分析を進めるか全体像を押さえつつ、選択肢を適切に分解しておかなければ、いくらデータを集めても活用できないリスクがあります。 仮説検証はどう? また、新しい発見がなくても、今回の分解作業で得られなかった知見を学びとして前向きに捉えることが大切です。単にアンケートを配信するのではなく、小さな仮説検証を重ねることで、より精度の高い内容にブラッシュアップしていくことが求められます。 生成AIの使い方は? まず、全体像を明確に定義した上で、生成AIを活用しながらアイデアを整理します。その後、専門知識を有する関係者と確認を行い、情報が重複せず整理されているかをレビューしていきます。 基本属性の整備は? さらに、顧客の基本属性については、共通の型として整備し、自分だけでなく部署全体で再利用できるように準備を進めています。

データ・アナリティクス入門

プロセスが紡ぐ学びの軌跡

原因探索はどう? 問題の原因を探る際、プロセスに分けて考えることの重要性を実感しました。Week1で学んだ「分析は要素を分けて比較する」という手法を再確認し、今後も意識して取り組んでいきたいと思います。また、対概念について学ぶ中で「問題に関係する要素」と「それ以外」を区別するシンプルな考え方が非常に使いやすいと感じました。これまでに習ったフレームワークとも併せ、具体的な分析に活かしていきたいです。 判断基準はどう? さらに、「正解」が存在しない中で最適な案を選ぶには、適切な判断基準に基づいて評価するプロセスが不可欠であることが印象に残りました。精度を高める努力は必要ですが、時間をかけすぎないバランス感覚を持ちながら課題に取り組むことが大切だと考えています。 営業戦略考える? また、売上や利益を拡大していくために、What、Where、Why、Howを丁寧に検討し、効果的な営業施策を立案・実行する必要性を感じました。関係者に説得力のある行動計画を提示することで、より良い成果を得られるよう努めていきます。 多角的視点は? 一つのアイデアに固執せず、多角的な視点で物事を見ることも心がけたいです。正解のない状況でも、適切な判断基準を設定して効率的に進めることで、無駄な時間を省きながら最適な解決策にたどり着けると実感しました。

データ・アナリティクス入門

データ分析で見えた本当の価値とは

データ分析の目的を明確に データ分析は、目的を持たずに取り扱うと、ただの意味のない数字でしかありません。そのことを今回の学習で目の当たりにすることができました。データ分析を行うにあたっても、なぜその分析をするのかという背景が見えなければ、同じ数字でも全く違った見え方をしてしまいます。そこで重要なのは、何を目的として分析を行うのかを明確にすることです。目的意識を持ち、定量的にデータを取り扱うことの重要性を学びました。 データで組織をどう活性化? 施策推進について考えると、個々の受付完了指標から組織や部単位での比較まで、データの切り口は多岐にわたります。組織が正常に稼働しているか、個人については「自分は頑張れているか」を評価することができます。さらには、何をもっと伸ばし、何を改善すべきか、メンバーのモチベーションの維持・向上のためにデータを利用したいと考えています。 データの伝達手段は? データを出すタイミングについては、デイリーにするか毎月末にするかなど様々な選択肢があります。組織やプロジェクトチームが活性化するための指標として、データを積極的に活用していきたいと考えています。データの伝達手段もまた多様で、メールや対面、ミーティングなどがあります。伝えたい内容、そのボリュームや重要度に応じて手段を使い分け、効果的に展開していきたいと思います。

データ・アナリティクス入門

仮説で切り拓く学びの未来

仮説の種類は何か? 仮説は、目的達成のための仮説や問題解決への仮説という2種類の仮説と、過去・現在・未来の視点を組み合わせた全6通りに大別されます。 複数仮説の効果は何? 仮説思考においては、複数の仮説を立てることと、その網羅性を意識することが重要です。網羅性を確保するためには、3C(Costmor、Competiter、Conpany)といったフレームワークを用い、さらにConpany分析の詳細については4Pの視点から整理することが有効です。 未来検証の焦点は? 未来型の目的に対する仮説検証では、目的達成のためにどのような考察や分析が必要かを事前に整理します。例えば、ある番組が視聴率を獲得できるかという問いに対しては、定型的な分析に入る前に3Cや4Pのフレームを用いて、どの部分にボトルネックが存在するのか、またそのボトルネックをどの程度克服できるのかという視点で考察を進めることが求められます。 仮説整理の進め方は? 依頼された仕事に取り組む際は、まずそれがどの仮説に該当するかを整理し、問題点についての仮説検証を行います。具体的には、WHAT、WHERE、WHY、HOWの順に問いを整理し、すぐにWHEREに入らないように注意します。そして、仮説の網羅性を保つために、フレームワークを意識しながら整理資料を作成することが推奨されます。

クリティカルシンキング入門

数字の捉え方を変える新発見への旅

数字の切り口をどう捉える? 数字の切り口には複数のパターンがあり、その見え方は切り方次第で変わるということがよく理解できました。しかし、切り口によっては解釈を誤る可能性もあるため、それをどのように防ぐかが重要なポイントだと感じました。 フレームワーク活用のヒントは? 分解の方法として3つのフレームワークが存在し、特にプロセスで切り分ける方法は今後意識して取り入れたいと思います。これらが効果を発揮するためには、ある程度の基礎知識やMECEといった考え方が必要であり、体系的に知識やスキルを習得する必要性を感じました。 管理会計で何を見極める? 現在の職務において、既存事業の理解には、売上構成などを管理会計的に分析することが重要だと考えています。ここでGailという手法が活用できると思いました。最初に事業を分解して特性を理解し、その特性から課題を洗い出していきたいと考えています。そして、今後の社会情勢と照らし合わせて事業の方向性を整理したいです。 整理と議論はどう進める? まずは既存事業部の情報収集を始め、その一方で管理会計の知識を身につけ、管理会計としてのプロセスを整理し、フォーマットを作成してみたいと思います。これにより自身の事業理解を深め、経験者とディスカッションを行い、現状の事業課題や今後の事業戦略に反映したいと考えています。

クリティカルシンキング入門

適切な問いが導くデータ活用術

適切な問いはなぜ? 今週の学びを通じて、問題解決における「適切な問いの設定」の重要性を改めて認識しました。明確に定義された「解決すべき課題」が、効果的な分析と解決策の導出につながることを学びました。また、データの適切な加工と分析によって情報を構造化し、視覚的に明確な形で提示する手法の有用性を実感しました。さらに、データの図表化が分析の精度向上に寄与することを体感し、実務での具体的な活用方法を見出すことができました。 現職での実践は? 「問いを立てる力」と「データの分析手法」を現職の業務改善プロジェクトで実践していきます。業務フローの課題特定に際しては、チームメンバーと「本質的な課題」を共有し、分析を深めるプロセスを確立しようと考えています。また、提案資料作成においてはデータの視覚化を通じて説得力を高め、経営層の的確な意思決定をサポートしたいと思います。 解決力高める秘訣は? 課題解決力を高めるため、以下の取り組みを実践します。毎週の振り返りで課題を整理し、本質的な問いを設定し、分析結果を図表化してチームで共有し、活発な意見交換を行います。わかりやすく論理的な資料作成を心がけ、改善を重ねます。また、学んだ内容を繰り返し実践し、定期的な振り返りで成長を目指します。これらの取り組みを通じて、実務での課題解決力を高めていきたいと考えています。

クリティカルシンキング入門

グラフで導く未来へのヒント

グラフで特徴は見える? 数字データの特徴を把握するためには、グラフ化して可視化することが効果的です。グラフにする際は、さまざまな切り口や区間を工夫し、どのような特徴に注目すべきかを見極める方法を検討します。時間がある場合は、手を動かして実際にいろいろ試してみることが大切です。 MECEの活用法は? また、データを漏れなく重複なく層別するためには、MECEの考え方が必要不可欠です。層別の方法としては、大きく分けて三種類の考え方があります。ひとつは総数を単に足し算で分割する方法、ひとつは単価と人数などを掛け合わせる方法、そしてひとつはプロセスに基づいて分割する方法です。 リスク特定はどうする? たとえば、熱中症を減らすための社内教育に取り組む場合、年齢、性別、部署などで層別を行い、熱中症のリスクが高いグループを特定することができます。また、熱中症がどのようなタイミングや場所、状況で発生しているかを分析することで、どのような対応策が必要かが明確になります。 対策整理は進んでる? このような考え方をもとに、5月中に昨年のデータを活用して分析を進め、夏に向けた対策の重点箇所や具体的な内容を整理していきたいと考えています。悩む時間をなるべく減らし、MECEを意識しながらさまざまな角度から分解し、新たな傾向を見出す手法を実践していきます。

データ・アナリティクス入門

過去との比較が教える成功のカギ

分析目的は何? 分析の目的やゴールを明確に決めることは、分析の方向性や手法、評価基準を正しく設定するために非常に重要です。明確な目的がなければ、分析結果がどのように活用されるか不透明となり、効果的な判断が難しくなってしまいます。 比較はどう考える? また、分析の本質は比較にあります。過去と現在のデータや異なる状況を比較することで、パターンや傾向が明確になり、最適な選択や戦略を導き出すことができます。 SNS比較で何が見える? 私自身の仕事においては、過去のSNSキャンペーンを期間ごとに区切り、比較することで、これまで見えていなかった結果が浮かび上がると感じました。ただやりっぱなしにするのではなく、過去との比較から数字の意味や背景が見えてくるため、結果の解釈がより具体的になると思います。たとえば、フォロワー数やエンゲージメント数の推移だけを見るのではなく、過去のキャンペーンと比較することで「なぜ今この結果が出ているのか」という背景に迫ることができます。 データ活用はどう? さらに、実際にデータを活用してマーケティングキャンペーンを企画することも有効です。小規模なプロジェクトを自ら立ち上げ、仮想のデータセットを使用してキャンペーンを分析することで、製品ごとの購買データに基づいた最適な広告戦略を立てる試みが可能になると感じました。

データ・アナリティクス入門

仮説で紡ぐブランドの未来

変化にどう対応する? ビジネス環境は刻々と変化しており、すべての情報をあらかじめ把握することは難しくなっています。そのため、仮説を立てながら方向性を見出し、PDCAサイクルのスピード感を向上させることが不可欠だと感じています。仮説があることで、リソースを効果的に活用し、時間や費用の無駄遣いを防ぐことができると実感しています。 ブランドの価値はどう見る? 特に新規事業で新しいブランドを立ち上げる際は、単に機能面の優位性だけではなく、ブランドのストーリーや価値が重要になると考えています。そこで、ターゲット層に確実に響く戦略を構築するため、仮説検証を繰り返し行っています。 仮説検証は効果的? まずは以下の仮説を設定しました。 ① ターゲット層は単に高価格だけでなく、ブランドのストーリーに価値を見出す。 ② 既存の高級製品と比べ、性能面での優位性を示すことで購買意欲が高まる。 これらの仮説を検証するため、ユーザーへのインタビュー、限定販売での反応テスト、SNSやマーケットでのフィードバック収集を実施しました。もし仮説が誤っていた場合には、その原因を徹底的に分析し、新たな仮説を立て直しています。 このようなプロセスを通じて、ターゲットにしっかりと刺さる戦略を練り上げ、新ブランドの価値を最大限に引き出すことを目指しています。

「分析 × 効果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right