データ・アナリティクス入門

歩みと気づきをつづる学びの記録

現状は何を示す? 問題解決のプロセスでは、まず「What:問題の明確化」から始め、現状とあるべき姿のギャップを把握します。現状を定量的な数値で示し、関係者間で共通認識を持つことが重要です。取り組むべき問題は、単なる異常事態の解消だけでなく、目指すべき姿へ到達するためにも活用できます。 どこに問題が潜む? 次に「Where:問題個所の特定」に進みます。ここでは、Whatの段階で整理した構造を基に、具体的な問題箇所を抽出します。たとえば、売上の構造を「客数×客単価」といった形で分解することで、問題所在を明確にすることができます。 なぜ原因を探る? 「Why:原因の分析」では、特定した問題箇所をさらに下位概念に分解し、具体的な原因に迫ります。詳細な原因把握は、問題解決のための重要なステップとなります。 どう取り組む解決策? 最後に「How:解決策の立案」を行い、制約や条件を踏まえた上で効果的な対策を導き出します。各ステップを順に辿ることで、全体像を把握しながら解決策を組み立てることが可能となります。 どうしてツリーを活用? また、クライアントから抽象的な課題が事前に提示されることが多いため、ロジックツリーを作成して情報を整理することが効果的です。全体の流れや解像度を上げることで、関係者間の認識合わせがスムーズになり、感度の良い切り口を見つけやすい環境が整います。案件のキックオフ時には、まず自分なりにロジックツリーを構築し、可視化することでその効果を実感できるでしょう。

戦略思考入門

ビジネスの知識を深めた環境保守事業の成功例

ビジネスのメカニズムとは? ビジネスの知識は「先人の知」であり、既存の法則や手法の上に成り立っていると考えられます。多くのビジネスが存続している理由を分析すると、規模の経済性、範囲の経済性、習熟効果、ネットワーク経済性といったメカニズムによって分類できることがわかります。 経済性を活かす戦略は? 当社の基幹ビジネスである環境測定関連の保守事業が全国展開したことは、規模の経済性に該当します。また、関連するシステム開発や他の環境関連部署を設置した事例は範囲の経済性に当たります。社内資源の活用だけでなく、顧客接点やブランド力といった無形資源も考慮に入れることで、規模や範囲の経済性を最大限に活かしながら、不経済に陥らないよう留意すべき点についても理解が深まりました。これにより、業務改善に対するアプローチも変わってきます。 多角化の根拠は何か? さらに、今後の多角化を進めるにあたって、単にキーワードを関連づけるだけでなく、その多角化の根拠を明確に整理し、より戦略的な思考を持つことが必要だと思いました。 多角化事業をどう分析する? 以前、自社事業の多角化状況を表に整理したことはありましたが、その経緯や現状については十分に考えていませんでした。多角化事業のそれぞれがどのメカニズム上に成立しており、現在のどの段階で規模や範囲の不経済に陥っていないかを分析することが重要だと感じています。新規事業の位置づけについても、ビジネスのメカニズムに則った説明ができるように分析を進めたいと思います。

クリティカルシンキング入門

振り返りで変わる私の未来

文章はどう伝える? 相手に伝わる文章や資料作成においては、ただ情報を羅列するのではなく、読み手がすぐに理解できるよう、整理された構造と流れを意識することが大切だと学びました。単なる数字や文字の羅列ではなく、必要な情報が一目でわかるように、無駄な言葉を省きつつ具体的な内容を盛り込むことが求められます。 図表はどう活かす? 資料作成では、グラフや図表を効果的に用いるため、まずは単体の数値やデータに適切な単位の記載を行い、その後、データの性質に応じたグラフ(時系列データならば棒グラフ、変化を示す場合は折れ線グラフ、要素ごとのデータなら横グラフ)を利用して全体を俯瞰できるように工夫します。また、フォントや色、アイコン、強調表現の使い分けにより、伝えたいポイントと図表の整合性を持たせることも重要です。 メールはどう構成? メール文章については、結論を最初に示すとともに、題名や書き出しに相手の興味を引く工夫を施し、リード文から注意を引く構成にすることが大切です。文章全体も項目分けや箇条書きを取り入れ、情報を整理して分かりやすく伝えるよう努めています。 学びをどう確認? これまで学んだ数字の分析や日本語表現の技法、資料作成のポイントを振り返り、デスクトップにまとめた内容を常に確認しながら業務に取り組むことが、効果的な資料作成への近道であると感じています。完成した資料は、まるで「もう1人の自分」がチェックしているかのように、全体の整合性や論理性を見渡して仕上げることを心掛けています。

戦略思考入門

実戦に活かす経済理論のヒント

学びはどこから来る? ビジネスを成功させるためには、人件費削減や生産性向上に加え、事業経済性について学ぶことが必要だと実感しました。特に、規模の経済性、習熟効果、範囲の経済性、ネットワーク経済性に関する理解が深まったことが印象的でした。総合演習では、ある企業を題材に、売上の分析や改善策、事業の多角化、宣伝、広告などについて考察し、理論の具体的な適用方法を探ることができました。 役割分担は見直せる? 自身の業界や自社に当てはめると、規模の経済性と範囲の経済性においてまだ改善の余地があると感じました。特に、各組織での役割分担が固定化している現状を変えるためには、上位概念を明確に示し、どの部署が何を担い、どこに責任があるのかを明確にする仕組みが求められると感じます。また、アウトプットの成果を正しく評価できる体制も必要だと実感しました。 改善策はどう探る? さらに、習熟効果に関しては、ノウハウのマニュアル化や知識の蓄積といった形式知の整備、さらにはAIの活用を通じた日々の改善が重要だと再認識しました。遅れを取るリスクを改めて認識し、今後の課題として取り組んでいきたいと感じています。 戦略はどう組み立つ? 自身の開発業務においては、ターゲットとする国や地域、対応する法規をグルーピングし、いかに規模の経済性を活かすかを検討する予定です。自社だけでなく、グループ会社や主要関連企業との整合性を十分に考慮し、事業全体としての経済効果を最大化する戦略を構築することが重要だと考えています。

マーケティング入門

受講生が伝える学びの軌跡

リサーチの必要性は? ある企業の開発事例から、まずリサーチ段階で潜在的なニーズを見つけることの重要性を学びました。真のニーズを引き出すためには、デプスインタビューやカスタマージャーニーの詳細な分析など、緻密な作業が必要であることが印象に残りました。 ニーズと強みはどう? 商品開発の段階では、潜在ニーズと自社の強みを掛け合わせることで相乗効果が期待できると感じました。同時に、消費者がどのようなブランドイメージを期待しているのかという視点を取り入れる必要があると気づかされました。特にネーミングに関しては、開発側が届けたいイメージよりも、消費者が直感的にイメージできる言葉が求められると考えました。 調査手法はどう? さらに、カスタマージャーニーのリサーチをより丁寧に行う必要性も感じました。過去のユーザーを数名ピックアップし、デプスインタビューを実施して真のニーズを明らかにすることや、業界サービスにおけるクライアントのペインポイントを探すことで他社との差別化を図ることが今後の課題です。 行動計画はどうする? 具体的なアクションプランとしては、まず過去ユーザーの中から年齢層や職種ごとに3名のデプスインタビューを設定し(初めは5名から8名程度に声をかける)、次にデプスインタビューを通して転職活動に至るまでの行動背景やペインポイントについて再調査を行います。さらに、登録者が約2000名いるインスタアカウントを活用してインスタライブを実施し、ユーザーの生の声を収集していく予定です。

データ・アナリティクス入門

データ分析で未来を切り拓くために

データ分析の目的を見直す データ分析の手法として、データの収集、加工、そして発見に焦点が当たりがちですが、何のためにデータ分析を行うのか、その目的が最も重要だと認識しました。そのために必要なデータ項目を選定し、それに基づいてデータを収集する習慣や仕組みを作る必要があります。ただ業務をこなすだけでは、将来に向けた効果的な分析ができず、特に自社の業務データはインターネットで入手できないため、自社内での心がけが欠かせません。 本当の売上分析とは? 私の業務では、データを集計して資料に記載することで終わることが多く、本来の意味での分析に至っていないと感じました。自部門の売上高を集計することが多いのですが、他部門との比較を通じて本当の意味での売上分析を行う必要があり、もっとオープンな視点での比較を考える必要があります。また、落札情報などを蓄積し、市場の相場観も併せて分析することが求められています。 有用なデータの収集方法とは? 現在、社内では中期経営計画の策定時期が来ており、過去の売上や競合他社の状況、他部門との比較を行いながら、データ分析を活用したいと考えています。しかし、データが社内に散在しており、有用なデータが収集しにくいという課題があります。そのため、将来を見据えてどのようなデータが必要かを社内で議論し、データ分析がしっかりと根付く職場環境を作りたいと思います。データを蓄積するためのフォーマットを作成し、社内メンバーがそれを保管・活用できる仕組み作りも進めていきたいです。

リーダーシップ・キャリアビジョン入門

日々の気づきが魅せるリーダーの軌跡

リーダーの行動は何故模範なの? リーダーの行動は、誰もが真似ることができる行動であり、常に当たり前のことを当たり前に実施する姿勢が求められます。また、周囲には自分に従う人がいるか、あるいは自分が従いたいと思う人は誰なのかを意識することが大切です。そのためには、自身の行動を言語化し、具体的に整理することが不可欠となります。リーダーは行動で示す存在であり、そのためには必要なスキルと姿勢を備えることが重要です。 どうして行動観察が効果的? 日常の様々なシーンにおいて、リーダーの振る舞いは大きな意味を持ちます。たとえば、1対1の会話や相談への返答、チームメンバーにタスクやプロジェクトを任せる際の説明、さらには関係各所とのミーティングで皆が嫌がるような課題やタスクが議論に挙がった時、その場の対応や行動を観察することが挙げられます。さらに、顧客への営業活動やプレゼン、商談といった場面においても、リーダーとしてどのような行動をとるかを分析して学ぶことが必要です。 どう振り返れば成長する? また、1日の終わりに自身の行動を振り返る時間を持つことが重要です。今日の発言や振る舞いがメンバーや関係者にどのような影響を与えたのかを見直し、継続すべき行動とやめるべき行動を明確にすることが、次の日の改善につながります。同時に、他者の行動も振り返り、尊敬できる行動や真似したい振る舞い、または不適切だと感じた行動について検討することで、自分ならどう対応するべきかを考える良い機会となります。

クリティカルシンキング入門

分析で見える新たな気づき

全体像をどう掴む? まず、全体像を明確にし、その上でMECEの観点から各要素を分けてみることが大切だと感じました。分析の際には、When、Who、Whatといった切り口を用いることで、気づかなかった本質や特徴が見えてくることが実感できます。たとえ分割したときに特徴があまり現れなくても、それ自体が一つの成功といえ、他の切り口での再分析に向けた前進となります。 数字から何が分かる? 次に、プロダクト営業が主な業務となる中で、8期の販売実績を業界別、企業別、新規と既存、リードタイム、職種、引き合い額、受注額、受注率、失注額、失注率、商談からのリードタイム、プロダクト別という多角的な尺度で分析する意義を実感しています。こういった多角的なアプローチにより、見落としがちな側面や新たな効果的手法を発見することができるでしょう。 リソースはどう使う? また、限られた人数でプロダクト販売に取り組む現状を踏まえ、業務分析によってどの部分にリソースを重点的に投下すべきか、あるいは外注した方が効果的かを数字に基づいて判断することが重要です。具体的には、販売実績の分析だけではなく、営業活動自体の業務分析を行い、目標達成のための仮説を立てる取り組みが求められます。 議論のポイントは? 最後に、これらの分析や仮説は常にアップデートし、得られたインサイトをチーム内で議論する機会を積極的に創出することを意識しています。こうした取り組みが、今後の行動計画や業務効率の向上につながると信じています。

データ・アナリティクス入門

仮説の問いで開く成長の扉

仮説をどう言語化する? データを見る前に「こうなりそう」と感じるのは、すでに仮説を持っている証拠だと感じます。経験や直感から「この傾向があるかも」と思うことが、後に重要な指標を絞り込むための手がかりとなります。そのため、仮説をしっかりと言語化し明示することはとても大切です。 仮説検証の効果は? 仮説が明確であれば、どの指標に重点的に注目すべきかが分かり、仮説が外れた場合でも「なぜ違ったのか?」という質問が自然に浮かび、スムーズに分析の焦点を絞ることができます。こうした仮説検証のサイクルを回すことこそが、データ分析の醍醐味であり、成果につながると考えています。 設備トラブルの影響は? 実際、稼働分析を日常的に行う中で、「おそらく設備トラブルの影響で停止が増えたのではないか」という仮説を立て、その検証に利用するデータを慎重に選定しながら、表面的な課題ではなく本質的な改善ポイントにたどり着こうとしています。 なぜをどう掘り下げる? また、分析業務において「なぜ?」と問いを繰り返すことを意識しているものの、これまで1~2回の掘り下げで思考を止め、表面的な原因に留まってしまうことが多かったと自覚しています。しかし、データ分析は正解のない問いに対して行うものであり、仮説や着眼点の精度が成果を大きく左右します。そのため、日常業務や分析の過程で「なぜを5回」繰り返すことを意識し、仮説が外れたときもすぐに切り替えず、なぜ違ったのかを徹底的に深掘りすることが重要だと感じています。

クリティカルシンキング入門

データ分析で見える新たな可能性

データ分解の視点とは? 事象をより深く理解するためには、分解が重要です。分解の際は、Who、When、Howなどの視点から試行錯誤が必要です。一つの切り口に固執せず、様々な切り口から数字を確認することが求められます。このとき、切り口は「もれなくダブりなく」を意識しながら進めましょう。 直感に頼らずデータ確認 切り口が見つかったら、それに基づいてデータを直感的に分析します。しかし、直感的な推測は一度疑い、データで確認することが大切です。結果が期待外れであっても、それは失敗ではなく、次のステップへの前進です。 新しい視点で見る方法は? ウェブデータの分析でも、新しい切り口での分析が効果的です。切り口は自動的に決めるのではなく、MECEを意識して分解していきます。ある切り口が有効であっても、他にないかを考え、複数の切り口でデータを分析します。 チームで進める業務の確認 業務においても同様に、チーム全体での作業がもれなくダブりなく行われているか確認します。また、責任範囲を異なる切り口で考えてみると良いです。 マンスリーレポートにどう反映? ウェブデータの分析に関しては、全体を定義した上で新しい切り口をMECEを意識して今週から来週の間に実施し、その結果をマンスリーレポートに反映します。この過程では、全体を把握した上でチームメンバーと議論し、より良い切り口を探してみましょう。 なお、チームの業務に関しては、まずは思考実験を行うことから始めてみてください。

データ・アナリティクス入門

問題解決の視点で成長する方法

何が最優先? 問題解決の考え方では、まず最も重要な問題を特定することが大切です。「何が問題か?」という視点から始め、数値を比較して問題の所在にあたりをつけます。また、理想の計画と現状の未達成状況を把握し、そのギャップを埋める方法を検討します。数値の比較では、見る必要のない範囲を見極めて効率的に分析を進めることも重要です。 現状はどう捉える? 現状把握の際には、問題をさらに深掘りするための切り口を考え、その仮説や優先順位をつけていきます。この過程では定性的な情報も取り入れることが重要です。特に、数値に頼りがちな初期の分析では、仮説の形成において定性的な情報を活用することが印象的でした。 分解して見える? ロジックツリーの層別や変数の分解を用いて課題に取り組むと、目標達成のための具体的な施策が見えてきます。たとえば、採用施設数や売上の向上、コストカットといった課題に対処する際は、変数分解の考え方が役立ちます。また、メーカー推奨品の効果を確認する際には、計画と実績を数値で評価し、感覚的な良し悪しに頼らず客観的に判断することが求められます。 分析の工夫は? 分析を進める際には、「見なくてもよい範囲・数字・切り口」を適切に除外することで、効果的な分析が可能になります。データの切り口についても、何が効果的か考え、必要であれば追加のデータ取得を検討します。また、チームメンバーとアイデアを共有し、他に異なる切り口の可能性がないかを確認することも重要なプロセスです。

データ・アナリティクス入門

「データ分析でつかんだ達成感」

問題解決のアプローチは? 問題に対応する際には、まず何を明らかにしたいのかをしっかりと理解することが重要です。結論のイメージを持ちながら取り組むことで、ストーリーが明確になります。 データ分析の重要な視点とは? データを分析する際には、実数と比率の両方を確認しましょう。これは、母数の違いによって見え方が大きく変わるためです。また、効果的なグラフを用いることで、分析結果を直感的に理解しやすくすることができます。事象に応じて最適なグラフの表現方法を選びましょう。 考えを整理するコツは? 課題に取り掛かる際には、問題点を整理しましょう。考えたことや思い浮かんだことをメモし、それをグループ化して整理します。必要に応じて一旦立ち止まり、考えを再度整理することも大切です。優先順位を決め、効率的に進めていきましょう。 Copilotを活用する方法とは? また、Copilotと相談しながら思考を整理するのも有効です。特に難しい問題に直面した際には、飛躍した考えやアイデアを得る手助けになります。 クリティカルシンキングをどう磨く? 比較資料についても、実践を重ねながらベストな可視化方法を見つけていくことが求められます。クリティカルシンキングを意識し、しっかりと身につけることが成功への鍵となります。 AIを使って新しい視点を得るには? AIを活用することも一つの手段です。AIで壁打ちをすることで新しい視点を得たり、考えの整理が進んだりするでしょう。

「分析 × 効果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right