データ・アナリティクス入門

みんなで目指す納得評価術

評価基準はどう決める? 複数の案を選ぶ際、定量的な評価を行う方法はチーム内の納得感を高めるために有効です。ただし、評価の重みづけが主観的にならないよう注意したいと感じました。 テスト実施の秘訣は? A/Bテストでは、変更する部分を限定・絞ることが重要です。どの部分が効果的だったかを明確に判断できるよう、実施時期や対象ユーザのセグメントを統一し、他の要因が分析に影響しないようにする点にも気をつける必要があります。 現状把握はできてる? まずは現状をしっかりと確認し、当たり前の事実であっても言語化してチーム全体で共通認識を持つことが大切です。その上で、事象の原因を特定し、解決策の検討に移るステップが効果的だと感じます。 アンケート設計はどう? また、仮説をもとにユーザアンケートをデザインする際は、因数分解やクロス集計ができるよう意識することがポイントです。フレームワークを活用して実際に分析し、わかりやすく言語化していくプロセスも有益です。 レポート共有はどう? アンケートのデザインにおいては、考え方や方針をチーム全体で共有し、どのような分析が可能か、またはどの分析を行いたいかを仮のレポートとして作成してみると良いと感じました。 理想と現状の対比は? 最後に、あるべき姿と現状を整理し、適切なフレームワークを見つけて習得することで、資料として他者に教えやすい形にまとめられる点にも大きな意義を見出しました。

データ・アナリティクス入門

データ分析で競争力を引き出す方法

データ分析の本質とは? データ分析における本質は「比較」にあると言われています。この過程では、分析したい要素以外の条件を揃えることが重要です。適切な比較対象を選定し、分析の目的に沿った比較を行うことが求められます。 分析の目的設定はなぜ重要? まず、分析を始める際には、目的を明確にすることが必要です。そして、仮説を立て、それに基づいて優先順位を設定します。データの収集、加工、発見を経て、最終的には効果的な意思決定につなげていくのです。 成果を再現するには? 具体的な例としては、Aによる効果を分析する場面があります。この場合、Aが「ある場合」と「ない場合」を比較することが重要であり、分析はまさにこの比較によって成り立っています。特に営業職においては、成果が出ている活動の再現性を高めることが、組織の実績向上へとつながる可能性を秘めています。実績としては、販売実績やシェアが分かりやすいですが、行動としても活動日数や活動時間、活動製品内訳など、さまざまなデータが存在します。 比較を成功させるためには? 競合他社や都道府県別、営業社員別での比較を行う際には、まず分析の目的を明確にすることが肝要です。マネジメント業務では、売れる仕組みや自社製品の選定理由などを分析し、再現性の高いアクションプランの策定を推進しています。比較対象を選ぶ際には、目的に沿っているか、条件が均一かを確認し、分析を始める前によく見直すことが重要です。

リーダーシップ・キャリアビジョン入門

リーダーシップスタイルの使い分け術

リーダーシップの4つのスタイルとは? 効果的なリーダーシップ行動について学びました。リーダーシップのスタイルとして、指示型、参加型、支援型、達成志向型の4つがあります。この4つのスタイルについては、どのような仕事や相手に対しても、それぞれ使い分けることが必要です。しかし、スタイルを意識しすぎるのではなく、仕事や相手に注目して、その状況に適したリーダーシップの行動を自分なりにイメージすることが重要です。このイメージを繰り返すことで、自分なりのリーダーシップの型を形成していくことが大切です。 行動を振り返る意義は? それぞれの仕事や相手に応じて、状況をよく考えた上で行動を決定し、実際に試みてみることをお勧めします。そして、しばらくの間は意識的にその行動を振り返ることが求められます。 具体的な仕事ごとの対応方法は? 具体的な仕事についてですが、採用、研修、運営に関しては現時点では支援型で対応を進め、企画については参加型を、DXやFSには指示型を採用しています。特に、DXと採用に関して同じ相手とのコミュニケーションが今週予定されているため、自分の中で意識的に違いを持ちながら物事を進めてみたいと思います。 自己分析で何が変わる? スタッフと対話する際には、どんな相手で、どんな仕事を行うのかを意識し、行動を変えていくことが重要です。また、これまでの自分の行動からどのように変わったのかを自己分析することも含まれます。

データ・アナリティクス入門

仮説を多角的に検証する重要性に気付いた日

仮説検証におけるフレームワークの役割 仮説を立てるための考え方について学びました。特に、3Cや4Pのフレームワークは、以前大学で学んだものの、実際の仕事では体系的に使用していませんでした。しかし、これらを意識することで仮説検証のための情報整理に役立つと感じました。 仮説A以外のデータも探すべき? また、自分の仮説に都合の良いデータだけでなく、仮説A以外の可能性を否定するデータも収集することの重要性に気付きました。実務ではスピードが求められ、自分の仮説を証明するデータを集めがちだったので、この学びは大変有益でした。これからは、直接的なデータだけでなく、複数の切り口からデータを検証するよう心がけたいと思います。 具体的には以下の点に活用できると考えています: - **企画・施策立案** - **クライアントへの提案内容の精査**:クライアントの立場に立って仮説を複数持つことで、より効果的な提案が可能です。 - **ユーザーの動向分析**:例えば、使用率が下がっている場合の原因検証などに使えそうです。 - **目標の設定**:年間目標の設定や到達見込みの予測に活用できます。 行動前に何が大切? 行動の前に、もっと仮説の検証やデータの収集に時間をかけることが重要だと感じました。今後は、「データを分析して仮説を立てる」という従来の手順から、「仮説を立ててデータを分析して検証する」という手順に意識を変えていきたいと思います。

クリティカルシンキング入門

データ分析で解決策を見つける喜び

Week1からの学びを総括 今週は振り返りの週ということで、改めてWeek1からの学びを総括しました。 まず、「データを理解し、深く分解すること」や、「相手に正確に伝えるアウトプットの重要性」、「イシューを特定し、それに対する適切な打ち手を考えること」を学びました。 トラブル解決で何を思い出す? 私の業務は製薬会社の生産部門におけるトラブル解決を担当しています。そこで思い出すのは、以下の内容です。 まず、年間目標や業務ごとの課題解決についてです。これには、生産部門でのトラブルの原因究明とその解決策の立案が含まれます。目標の達成に向けてマイルストーンを設定し、各段階でイシューを特定し、対応策を考えることが重要です。 データ分析はどう生かす? 次に、与えられるデータに対する考察についてです。多角的にデータを分析し、イシューを浮き彫りにする能力が求められます。この分析の過程で得られた洞察が、課題解決の手がかりとなります。 メンバー育成の視点で何が重要? 最後に、部門のメンバーのキャリア開発と育成です。これも同様に、個々の成長を見据えたマイルストーン設定とイシューの特定が重要であり、その都度適切な指導やサポートを行うことが求められます。 今回の学びが示す未来 今回の学びを通じて、日々の業務においても適用できるアプローチが増え、より効果的なトラブル解決とチーム育成の実現が期待できると感じています。

クリティカルシンキング入門

MECEで問題解決の達人になる!

何故分解は必要? 物事を分解することの必要性と「MECE」という概念の重要性を学びました。分解することで問題の本質や解決策が見えやすくなり、取り組むべき課題が整理されることに気づきました。また、MECE(漏れなく・ダブりなく)というフレームワークを用いることで、重複や漏れを防ぎ、全体を効率的に把握できるとわかりました。MECEを活用することで、分析や意思決定の精度を高め、効果的な解決策を導き出すことができると感じました。 どうやって結果を整理? 現在の仕事の結果をさらに向上させ、周囲に効果的に伝えるためには、結果を分解して理解を深める時間が必要だと感じています。分解を通じて、各要素の役割や改善点を明確にし、全体像を把握することで、的確なアプローチや改善策を見出せるようになります。また、分解した内容を周囲に伝えることで共通の理解を促し、チーム全体の成果向上にもつながると考えています。このプロセスを意識的に取り入れ、持続的な成長を目指したいです。 学びをどう実践? 学んだことを実践することも重要だと感じています。知識やスキルを仕事や日常に取り入れることで、単なる知識の習得にとどまらず、理解が深まり、より確実なものになります。実践を通じて得たフィードバックや気づきをもとに改善を重ねることで、さらに成長し、より良い結果につなげられると信じています。まずは一歩を踏み出し、学びを行動に移すことを意識していきたいと思います。

データ・アナリティクス入門

初心者でも使える問題解決フレームワーク

実践で感じた課題とは? あるべき姿と現状を比較することを心がけてきたが、いざ実施しようとするとできていないと感じることがあります。そのため、まずはWhat(問題を定める)を意識することが重要だと感じています。課題を考える際は、マーケティングの課題なのか、人材の課題なのかといったように、区分分けをすることが有効です。 ロジックツリーは効果的? 数字はロジックツリーのように因数分解することで、どの要素がどのように貢献しているのか(正負を含めて)を把握できることを初めて知り、これはぜひ身に着けたい知識です。 現状把握と意識共有の方法 まずは状態を確認し、たとえ当たり前のことでも言語化することで現状を把握し、チームでの共通認識を持つことが大切です。その後、原因となる事象を特定し、解決策の検討に進みます。ユーザアンケートをデザインする際には、仮説をもって因数分解ができるように、クロス集計も意識します。 新人教育でのロジックツリーの活用 新人教育ではロジックツリーやMECEを活用して、アンケートデザインにおける考え方の方針をチームで共有し、どんな分析ができるのか、また何をしたいのかを実際に仮レポートを作成してみることも大切です。 フレームワークの選択と目標 あるべき姿と現状を整理するために、優れたフレームワークを見つけ、それを習得することが目標です。また、教えられるように資料に整理することも心がけていきます。

データ・アナリティクス入門

さまざまな視点で問題解決を探る魅力

分析に必要な切り口とは? 分析を行う際には、さまざまな切り口を持つことが重要です。性別や年代といった属性に加えて、契約内容なども分析に取り入れることで、問題解決の糸口が見つかる可能性が高まります。物事を分析する際には、MECE(Mutually Exclusive and Collectively Exhaustive)の原則に従い、要素が重複したり欠けたりしていないか確認することが必要です。また、ロジックツリーを用いて、物事を分解して考えることで効果的な分析が可能になります。 問題解決に向けた新しい視点は? 分析において、それぞれの属性や切り口に新しい視点を加えることで、問題解決へと繋げることが求められています。バイアスを排除し、客観的な視点で物事を理解するためには、問題や課題を細分化して考えることが有効です。 契約者分析の具体例は? 具体例として、契約者の分析においては、契約時間帯や取引接点、折衝回数、前回の契約からの経過年数などの要素を考慮することが考えられます。また、ロジックツリーを活用し、契約率の改善を図ることができます。これにはリードの質を向上させるためのスコアリングや獲得チャネルの最適化のほか、営業プロセスとして初回アプローチの改善やフォローアップの最適化、営業担当者のスキル向上が含まれます。さらに、価値提案の強化として、パーソナライズされた提案の提供や他社との差別化も重要なポイントとなります。

戦略思考入門

理想のリーダー像への戦略的挑戦

何を達成する? これまでの学習を振り返る演習を行いました。この機会に、これからの自分の理想像を改めて描き直し、その中でシンプルで一貫性のあるリーダーを目指したいと思いました。戦略思考の基礎を再度学び直し、目的を明確にして、それを達成するための最短ルートを設計することの重要性を再認識しました。特に「何を達成したいのか」、「いつまでに達成したいのか」、「なぜそれが必要なのか」といった目的を具体的に言語化することが重要だと実感しました。また、利用可能なリソース、特に人材を最大限に活用することの必要性も理解を深めました。効率的なルートを設計して、より効果的に目標達成を目指したいと考えています。 戦略はどう見極める? 問題を俯瞰し、深掘りを繰り返して分析する意識を持ち続けたいと思います。全体の流れを確認し、そこからイシューを特定し、攻略法を戦略的に立てることを心がけています。イシューの解決から全体の解決に繋げる部分を構築し、その過程で戦略思考を活用していきたいと考えています。また、学んだフレームワークも活用し、規模の経済性を最大限活かせる方法を模索し続けたいです。 学びをどう実践する? フレームワーク活用の習慣化を進め、分析に必要な要素を素早くカテゴライズし、様々な課題に応用する技術を磨いていくつもりです。また、朝礼で学んだことを発表する場を活用し、学習内容のアウトプットを繰り返すことで、理解を深めたいと思っています。

データ・アナリティクス入門

MECEで見つけた問題解決の新たな視点

問題解決の4ステップとは? 普段、何気なく課題を立てる際にwhat、where、why、howを使ってタスクを起こしていましたが、これが問題解決における4ステップであることを今知りました。そのため、4つを順に行わず、whatとhowばかり考えてタスクに起こしていたことが間違いだったと気づきました。 効果的なMECEの活用法は? MECEを活用してロジカルツリーの作成、ロジカルに課題解決を実践することで、少人数のチームでも短時間で効果を上げるサイクルを構築していきたいと思います。今後はプロセスを踏み、自社サービスの課題解決に向けて努力していきたいです。 どのようにMECEを実践する? MECEの概念についてはなんとなく知っていたものの、それを実践できていなかったと感じています。早速活用したいと思います。特にSEOコラムのオーガニックを増加させるために、MECEで分類してから細かく分析したことがないので、試してみたいと感じました。他の分類においても、影響力が少なくてもどこまで細かく分類すべきかを考えるのは難しいと感じます。 タスクの明確化はどう進める? まずは、自身のマーケティング、メディア制作、CS効率化などのタスクを明確化し、最終ゴールである新規会員登録の増加(且つ正しいキーワードと属性のユーザー獲得)を最短でどこからできるのかを検討します。その後にスケジュールを立ててチームに共有したいと思います。

クリティカルシンキング入門

データ分析で新発見!視点の転換術

売上分析の課題とは? 商品に関する売上分析を行う際、数値データを基に顧客層を分類して分析を進めることがあります。しかし、その分類方法に悩むことが少なくありません。分類後、もし特に傾向が見られなかった場合、それは新たな発見と受け止め、他の視点から見直す機会とすることで、時間を有効に使いたいと思います。 データを効果的に分解するには? 売上データの分解に関しては、講義で学んだように「年代」という一つの軸でも様々な区分が可能です。10歳刻み、または18歳以下、22歳以下、39歳以下など、異なるグルーピングによって見えてくるデータが変わります。分解時には、他にも分け方の可能性がないかを考えていくことが重要です。 結論を急がないための思考法 データからの考察を行う際、結果が見えた時点で急いで結論を出しがちです。しかし、その前に「本当にその結論で良いのか?」と疑問を持ち、再度見直す時間を設けるように心掛けたいです。 視覚的分析がもたらす効果とは? まずは視覚的にデータを確認することが肝心です。数値を頭の中だけで捉えるのではなく、見やすい表やグラフを作成し、比率や色を効果的に使うことで、直感的に理解できるよう努めます。そして、分析結果を迅速に分解するために、どのように分類するかということに特別な時間をかけるのではなく、分解した後で何が見えてきたのか、次にどう行動するべきかという考察に時間を注力したいと思います。

データ・アナリティクス入門

現場で磨く仮説思考の実践

具体的演習の魅力は? 総合演習の課題解決は非常に具体的で、これまでの演習と比べると、より深い検討が求められる良い機会となりました。 フレームワーク使用法は? 仮説を考えるプロセスでは、思考の幅を広げるためにフレームワークの活用や対概念の取り入れ方が提示されました。しかし、現時点ではフレームワークの使いこなしが十分ではないと感じ、今後の日々の活動の中で意識的に取り入れていきたいと思います。 A/Bテストの効果は? また、A/Bテストを活用して早期にアクションを起こすことで、得られたデータをもとに仮説をさらに精緻化する取り組みも印象的でした。Web関連の利用場面では活用しやすい一方、現業務にすぐ生かすことは難しいと感じたため、二つの選択肢の中から比較しながら適した選択を見つけるアプローチを取り入れたいです。 問題解決の流れは? 問題解決については、問題に至るまでの流れをプロセスに分解し、どの段階に原因があるのかを明らかにする手法が有効だと実感しました。解決策を検討する際にも、複数の選択肢を洗い出し、根拠をもって絞り込むことの重要性が伝わってきました。 現場実行のコツは? 現在の業務では、大規模なデータ分析による示唆を提示するよりも、現場に近いところですぐに施策を実行することが求められていますが、仮説思考に基づいて複数の仮説を立てた上で行動に移すプロセスを意識的に実践していきたいと考えています。

「分析 × 効果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right