データ・アナリティクス入門

仮説から行動へ!解決の近道

問題分析はどうする? 実際のビジネスでは、問題の要因が複雑に絡み合っており、「正しい」原因の究明はほぼ不可能です。そのため、原因の目星が立った段階で早急に対策を試してみることで、解決に近づけると感じました。データ収集と分析は重要ですが、what、where、whyがある程度把握できた時点で、howのアクションを起こしながら問題の原因を探ることが大切だと思います。こうしたアプローチの中で、A/Bテストは特に有用です。 仮説検討のコツは? また、原因の仮説を考える際には「対概念」を活用することが効果的であると感じました。問題に関連しそうな要素をリストアップするだけでなく、それ以外の視点にも目を向けることで、思考の幅を広げ、戦略全体の問題点やその他の要因を整理することが可能になります。 迅速な対策は? この「Howを試しながら問題の原因を探る」考え方は、変化の激しい現代の業務において非常に有効です。たとえば、定期的に行われるストレスチェックで高ストレス者が多い組織があった場合、原因を探り続けていると年度交代や組織変更で状況が一変してしまう恐れがあります。したがって、原因がある程度見えてきた段階で素早く打ち手を実行し、問題解決に向けたスピード感を持つことが求められます。 データ準備は万全? さらに、現在担当している業務において問題解決の4ステップを進める際には、どのようなデータが必要かをあらかじめリスト化しておくことが重要です。必要なデータがすぐに揃わない状況では、検証に時間がかかり、迅速な対応を妨げる可能性があります。事前に想定して準備を整え、howの実行に至るまでをスムーズに行いたいと考えています。

クリティカルシンキング入門

イシュー明確化で見えた改善への道

イシューの本質は? イシューを明確にすることの重要性について学びました。まず、思いついた解決策を実行する前に、課題の核心を押さえるイシューを明確にすることが必要です。誤ったイシューの捉え方は、課題解決の方向性を大きく逸脱させる可能性があります。適切なイシューの見つけ方として、次のプロセスを実行することが推奨されます。 目的と現状は? まずは、何を達成したいのかという目的をはっきりさせることです。また、関連するデータや情報を集めて現状を把握し、関与する人のニーズや期待を理解することが重要です。さらに、現状を多角的に分析し、具体的な問題を明らかにすることが求められます。 戦略のギャップは? 次年度の戦略立案や施策検討では、目標と現状のギャップを認識し、その原因を探るために十分な情報収集を行います。これまでの施策を見直し、改善点を見極め、メンバーと共通のイシューを持ちながら検討を進めることが重要です。 セミナー効果は? また、プロモーションを目的としたWEBセミナーを開催し、その効果を検証します。具体的には、申込人数や参加動機、顧客属性の分析を通じて、セミナーの目的と結果が一致しているかを確認します。さらに、事後営業の戦略を考え、効果を数値で評価します。 問いの共有は? 業務においては、問いから始め、問いを残し、問を共有するというアプローチも重要です。特にプロジェクト進行中においては、最初に設定した問いから外れることを防ぎ、メンバーと目線を合わせる工夫が求められます。そのために、年度初めに評価指標を設定し、過程を記録して振り返り可能な状態を構築することを考えています。

クリティカルシンキング入門

グラフで伝える!データ活用の新発見

グラフの特徴は? グラフに関して、以前は感覚的に理解していたつもりでしたが、今回の学びを通じてその理解がより明確になりました。例えば、帯グラフと円グラフの違いを再確認しました。円グラフは数値の大きさを強調する一方で、帯グラフは要素間の比較がしやすいという特徴があります。また、棒グラフと折れ線グラフについても理解を深めました。棒グラフは推移を強調し、折れ線グラフは変化や傾向を捉えやすくする役割があります。 分析手法は何? スライド作成における学びとして、データの解釈を示す際には基礎データを加工し、図表を用いて分析結果を表現するプロセスが重要です。しかし、その前にキーメッセージを仮説として立て、それに基づいたひと手間を加えることが大切であると理解しました。特にサンプル数が多い場合、このプロセスは複雑になることがあります。 業務にどう応用? この学びを業務にどう活かすかについても考えました。リサーチ業務では、統計データや一般公開データからリサーチペーパーを作成する際に、適切な分析視覚を導き、適切な図やグラフを選択するスキルを磨きたいと思います。企画立案業務やプロジェクトの計画・遂行においては、質的情報を効率よく示すための工夫が求められます。特に分かりづらい内容を文章で表現する際には、フォントの選択や文章の配置、配色などを意識して、効果的に伝えるよう心掛けたいと考えています。 資料提案の工夫は? 業務においては、現在取り組んでいるプロジェクトの提案資料作成において、学んだことを応用する予定です。スライドを用いる際には、「メッセージ」や「見せ方」に注意し、情報を盛り込みすぎないよう意識します。

データ・アナリティクス入門

ゆるっと分析!問題解決のコツ

どうして分解が必要? 問題が起きたとき、まずは「どうすれば」という視点から考えるのではなく、問題を細かく分解して捉えることが重要です。具体的には、まず現状を把握し(What)、その問題がどこで発生しているかを認識し(Where)、なぜ起こったのかを明らかにし(Why)、その上でどのように解決すべきか(How)を検討する流れが求められます。 どのパターンが有効? また、問題解決のパターンは大きく2つに分けられます。一つは、あるべき姿に対して過去の実績が届いていなかった場合、もう一つは、未来の理想と現状との間にギャップがある場合です。これらの状況を整理するためには、ロジックツリーを活用し、「What」「Where」「Why」「How」の観点から一つひとつ問題を解明していくことが効果的です。さらに、情報を漏れなくダブりなく整理するMECEの視点も大切です。 何が運用の障害? 今、営業から導入プロセスに至るまでのオペレーション検討を進めていますが、まだ実際には運用が始まっていないため、各段階で運用面の不備が見えてきています。そこで、まずは現状のフローにおいて何が問題なのか、理想の状態はどのようなものかを洗い出します。その上で、問題箇所を特定し、最適な解決策を考案していく必要があります。 どうやって整理する? 各検討箇所ではロジックツリーを用い、「What」「Where」「Why」「How」の視点で分析を繰り返していくことで、問題を一つずつ確実に解決していく姿勢が大切です。頭の中で漠然と把握しているだけでなく、明確に言語化して整理することで、問題解決への道筋がはっきりと見えてきます。

クリティカルシンキング入門

数字を味方に!分解力で成長する分析術

数字を味方にするには? 数字を味方にするには「分解」が必要であることを学びました。また、分解には複数の切り口で行うことが大切です。単純に機械的な切り口では、本当に欲しい結果が得られにくいため、定性的な仮説を持ちながら視点を変えつつ切り口を探すことが重要です。 手を動かすことの意義とは? 特に「まずは手を動かす」という点は感銘を受けました。やってうまくいかなければ、それは失敗ではなく有効ではなかったことがわかるというパラダイムは新鮮であり、大きな学びとなりました。 MECE手法で得られるものは? 手法としてMECEを活用することで、適切な分解に繋がることも学びました。「分解する」と一言で言っても、最低限の分解方法の知識がないと意味がありません。MECEの手法を学び、仮説を立てながら実践に移したいと思います。 キッチンカー分析にどう活かす? 現在、自社の敷地内に出店しているキッチンカーの売上傾向の分析を行っていますが、この分析に今回学んだことが役立つと考えています。今まではデータを機械的に分解し、データを集めて傾向を調べ、次の仮説を立てていましたが、そもそもの分解が正しいか疑問を持つところから始める必要があります。異なる切り口によって、より効果的な分解と分析に繋がるので、その方法を実践してみます。 AIとの協働で得られる発見は? 上記の集計しているデータを見直し、自分で立てた仮説とAI分析による切り口の提案を比較してみるつもりです。切り口や分け方を自分で考えると同時に、AIでもうまく提案させるようなプロンプトを工夫し、斬新な発見ができる方法を模索したいと思います。

データ・アナリティクス入門

データ分析で見つける新たな視点

分析プロセスの目的は? 分析は、目的に基づいて要素を分けて整理し、意思決定に活かすためのプロセスです。重要なのは、分析が迷子にならないようにすることです。目的を持ってデータを収集し、それに基づいて加工・分析を行うことが求められます。分析は比較となり、データの種類に応じた適切な加工法を使って意味を明確にすることが重要です。 視覚化手法をどう活用する? 視覚化の工夫も、分析の際には非常に役立ちます。例えば、n択の選択人数を割合で見る、全体に対する比率や割合を円グラフで表現するといった工夫が考えられます。推移の比較には縦棒グラフが適しており、要素間の比較には横棒グラフが効果的です。 仮説設定がなぜ鍵となる? 分析のプロセスで大切なのは、目的や仮説を明確にすることです。仮説をもってデータを収集し、加工して結果を導き出す過程で、なぜその分析を行うのか(背景)、そしてそのデータから何が言いたいのか(主訴)を明確にすることが鍵となります。また、仮説が誤っていると判明した場合は、分析の進め方や視点を見直し、正しい結論に導くことが必要です。 学んだことをどう実務に活かす? さらに、ライブ授業で学んだTIPSを実務に活かし、具体的なデータの可視化手法に取り組んでみることで、理解が深まります。質的データに関しても、名義尺度や順序尺度といった基本を学び、さらなる分析力を身につけてください。 このように、分析の目的やデータの加工法についてしっかり理解し、視覚化手法を活用することで、効果的な分析が可能になるでしょう。学んだことを実際のデータに適用し、実践を通じて、さらなるスキル向上を目指してください。

データ・アナリティクス入門

課題細分化で見つけた成功への道標

ロジックツリーで課題を細分化するには? ロジックツリーを活用して課題を細分化することは、ビジネスにおいて非常に役立つと感じました。大きな課題はどこから手を付けてよいかわからないものですが、細分化することで優先順位を付けやすくなり、各課題の重要性に応じて対応することが可能となります。また、漏れなくダブりなく分析することも非常に重要です。分析や解決策に漏れやダブりがあると、無駄な労力ややり残しが生じてしまいます。そのため、MECEの視点で課題解決の計画を立てたり、分析方法を考えることが不可欠だと認識しました。この手法を今後の業務で活用したいと思います。 計画立案の重要性とは? 過去に私が業務課題へ対応した際、初期段階で計画を立てずに場当たり的な解決策を進めた結果、効果が限定的となり、打った策が効果を上げていたかどうかも分析できなかった経験があります。この経験から、最初にしっかり計画を立て、関係者の合意を得た上で解決にあたった方が良いと感じました。今後は、今回学んだロジックツリーの考え方を活用し、業務課題の特定や優先順位付けを最初に行い、効率的に解決策を立案して実行したいと思います。 成長戦略にロジックツリーを活用する方法 私は現在、自社の売上をさらに伸ばし、業務の質を高めるための戦略を考え、実行する部門に所属しています。この業務を担うために、今回学んだ考え方が非常に役立ちます。具体的には、グループ全体の業績、店舗ごとの業績、そして社員個々の業績までを細分化して分析し、業績をさらに高めるための課題洗い出しや対応策の立案に、ロジックツリーの考え方やMECEの視点を取り入れたいと考えています。

クリティカルシンキング入門

伝わるプレゼンで未来を変える

分かりやすさの秘訣は? 説明やプレゼンテーションで最も大切な点は、相手がどれだけ理解しやすいか、そして心に残るかどうかだと改めて実感しました。まずは、目的と対象に合わせて伝えたいメッセージを明確にすることが基本であると感じます。 視覚工夫は効果的? その上で、メッセージの理解を助けるために、言葉遣いやフォント、色、アイコン、図表、グラフ、配置といった視覚的要素に工夫を凝らすことの重要性も学びました。これらの工夫は、伝えたい内容をより効果的に伝えるための手段となります。 分かりやすい事例は? 具体例として、上司への企画書では、従来口頭で伝えていたアイデアを文章と図表で分かりやすく表現することが求められます。また、学校説明会では、参加者に特に伝えたいポイントを際立たせるために、シンプルなスライド構成が効果的です。さらに、授業での説明スライドでは、生徒の印象に残りやすいよう視覚資料を活用し、内容の理解と定着を図っています。 事例分析はどうすべき? また、街のポスターや動画のサムネイル、他の人のプレゼンスライドなど、良いと感じた事例を分析し、自分なりの改善策として取り入れていく姿勢も大変参考になりました。ナノ単科のデータアナリティクスの授業で学んだ内容を活かし、目的に応じた図表やグラフを作成する能力も向上させることができました。 効率的資料作成は? 最後に、PowerPointのショートカットを積極的に利用することで、効率よく資料作成が進められる点も印象深かったです。このような取り組みを通じて、より効果的な資料作成とプレゼンテーション技法を身につけることができたと感じます。

クリティカルシンキング入門

学びを深めるための分解術の秘訣

理解を深めるための分解とは? 物事を理解する際には、それを分解することが重要です。分解することで新たな視点が得られることがありますし、わからないことは必ずしも失敗を意味するわけではありません。むしろ、わからないことが明確になること自体が大きな成果です。また、物事をどのように分けるかによって、異なる理解が生まれることもあります。 MECEを使った効果的な分解方法 分解する際には、MECE(Mutually Exclusive and Collectively Exhaustive)を意識することが求められます。まずは全体を定義し、その上で足し算型、掛け算型、割り算型、またはプロセス型のどれに当てはまるのかを考えつつ分解していきます。 顧客データの多角的な分析 さらに、具体的なシーンにおいては、顧客の問い合わせやクレームの分析、データエラーの分析、顧客属性の分析、商品ごとのニーズ分析などが挙げられます。メンバーへのフィードバックや面接での思考プロセスのチェックもこれに含まれます。これらの情報はモニタリングダッシュボードの作成やrawデータの取得の切り口定義にも役立ちます。 フロー分割で問い合わせを深く分析 特に顧客の問い合わせの段階から注文に至るまでのプロセスは、フローを分けて考えると理解が深まります。このフローの中で、問い合わせのカテゴリーごとにさらに細かく分解することができます。例えば、問い合わせツールや新規顧客と既存顧客の違い、購入回数、法人と個人の区分、エラー項目、エラー後のコミュニケーション回数など、具体的に分けてみることで、多角的に分析することが可能になります。

データ・アナリティクス入門

スピード重視の仮説検証で未来へ

数値と定性の評価はどれ? デザイン変更の方法案を、コスト、スピード、意思疎通などの各観点から数値で比較する手法は、とても効果的だと感じました。しかし、実際には数値化が難しい場面も多いため、例えば「大中小」や「◎〇△×」といった定性的な評価方法も有効だと思います。実際、イベントのプランニング月間である6月には、MECEに基づいて項目を洗い出し、これらの評価方法を用いて各案を総合的に比較したいと考えています。 A/Bテストの理解は進んでる? A/Bテストについては、これまで学んできた知識を活かし、解説通りの考え方で演習に取り組むことができました。その後の動画で、ポイントを絞って比較するという視点が紹介され、非常に納得のいく気づきを得ました。以前から社内ではA/Bテストの必要性は認識していたものの、コストを抑えながら迅速に実施する方法が見出せずにいました。今後、部内でのリサーチや議論を重ね、具体的な手法が確立できた際には、今回の学びを活かしていきたいと思います。 行動と分析のバランスは? 最も印象に残ったのは、原因の特定に時間をかけすぎず、実際に行動を起こし、仮説検証のサイクルを早期に回すという考え方でした。これまで、分析にもっと力を入れるべきだと考えていた自分が、ビジネスのスピードとのバランスを重視する必要性に気付かされました。もちろん、分析と実証の双方に適切な時間とエネルギーを割くことが重要だと感じています。具体的には、先輩社員の意見を聞いたり、必要に応じて外部の知見も取り入れながら、約半分の比率で分析を進める方法を模索し、明日から日々意識して取り組んでいきたいと考えています。

戦略思考入門

顧客視点で磨く差別化の極意

顧客視点は十分? これまでは自社や自部門の強みと弱みだけに着目して差別化戦略を考えてきたと感じます。しかし、事例で示されたように、施策が本当に顧客に求められる価値となっているか、顧客視点での競合―すなわち差別化の相手が誰で、どのようなアプローチをとっているのか―を把握することが必要です。また、その施策が実現可能であり、継続性があるかを吟味しなければなりません。どれだけコストや工数をかけても、持続できなければ意味がありません。 戦略実行は可能? 差別化戦略を検討する際には、ポーターの3つの基本戦略やVRIO分析といったツールを活用することが有効です。これらの分析手法を用いながら、段階的に検討を進めることで、戦略の実行可能性を高められると感じます。 採用戦略は効果的? また、競合他社の採用戦略を分析することで、どのように求職者の注目を集め、定着率を向上させるかを考える機会が得られるでしょう。更に、日々のオペレーションにおいて、他社と異なる運用上の優位性を意識的に追求することが大切です。 キャリア差別化は? メンバーのキャリアについても、人材育成の過程で他にはない差別化を意識したキャリア形成をサポートすることが求められています。新卒採用やキャリア採用においても、独自の差別化戦略を企画し、実行に移すことが重要だと感じます。 業務向上は順調? 業務の品質やスピード向上のための勉強会も有効な取り組みです。さらに、メンバー各自のスキルマップやこれまでの経験を整理し、独自のキャリア形成につなげるために共に考える姿勢が、今後の成長につながると実感しました。

クリティカルシンキング入門

思考を深めるクリティカルシンキングの秘訣

なぜ自己反省が大切? クリティカルシンキングの本質は、他者や提案を否定することではなく、自分自身の思考プロセスを客観的に振り返ることにあります。たとえば、「なぜ私はこの選択肢を良いと判断したのか」「どのような経験や価値観がこの結論に影響しているのか」といった自問を通じて、自身の思考の偏りや前提に気づくことが重要です。また、「自分の考えが絶対に正しい」という固定観念を避け、他者の異なる視点や経験から謙虚に学ぶ姿勢も求められます。チームメンバーや関係者との対話を通じて、自分が気づかなかった新たな視点を積極的に取り入れることで、より深い理解と柔軟な思考を育むことが可能になります。 どうして質問が大事? クライアントワークで先方とコミュニケーションを取る際にも、相手の言葉をそのまま受け入れるのではなく、「なぜ必要なのか?」といった疑問を深堀りすることを心がけています。実際の会話では、「その機能が必要な理由は何ですか?」「それによってどのような効果を期待されていますか?」といった質問を通じて、目的や背景を掘り下げ、より深い理解を得ることを意識しています。 なぜ市場を選ぶ? 新規事業の戦略を練る際も同様に、市場調査とターゲット層の明確化を行い、「なぜこの市場なのか」「なぜこのタイミングなのか」という視点で検証を重ねます。分析業務のレポート作成においては、単なるデータの羅列ではなく、「なぜこの結果になったのか」「どのような施策が有効か」といった要素まで考慮し、具体的なアクションにつながる提案を含めます。これにより、情報がより具体的で理解しやすくなり、実用的な価値を提供することができます。

「分析 × 効果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right