データ・アナリティクス入門

一歩ずつ探す解決のカギ

課題発見はどうする? 分析の際は、プロセスごとに分けて検討することで、どの段階に課題が潜んでいるのかを見つけやすくなると感じました。原因の仮説を立てる際には、関連性が高いと思われる要素だけではなく、そうでない可能性も含めて「対概念」を活用し、視野を広げることが有効です。 解決策の比較は? また、複数の解決策を検討する時は、条件をなるべく同じにした状態で両方の施策を試す「A/Bテスト」が効果的だと思います。各プロセスごとのデータを丹念に分析しながら、仮説を練り、実践的に検証していくことで、問題解決の精度を高めることができると実感しました。 問題の本質は何? 問題解決においては、まず「What:問題は何か、どの程度の問題か」、次に「Where:問題はどこにあるか」、その次に「Why:問題はなぜ発生しているのか」、そして「How:対策はどうすべきか」と、手間を惜しまずにしっかりと向き合うことが大切だと考えています。 思い込みは避ける? 例えば、あるサービスの売上が低下した場合、その原因をプロセス別に網羅的に仮説することで、思い込みや決めつけを防ぐことができます。短絡的に一つの原因で結論づけず、見落としがちな小さな要因にも目を向けることが、より正確な原因特定につながるでしょう。 他の要因は何? さらに、売上低下の原因が購入者数の減少だと仮定した場合、すぐに「売価の上昇」が原因と結論づけるのではなく、もし売価の変動が原因でないとすれば、他にサービス内容の悪化など潜在的な要因があるのではないかと、幅広い視点で検討することが重要だと感じました。 成果検証はどう? 最後に、複数の施策を同時に実稼働させる「A/Bテスト」についてですが、一人の判断だけに頼らず、実際の成果がどの程度得られるのか、具体的な事例を交えて効果を検証してみたいと思います。

クリティカルシンキング入門

踏み込むデータ、広がる発見の世界

データと本気で向き合う? データの用い方や見せ方について再確認でき、また新たな発見を得ることができました。従来は説得力や妥当性を高めるためにデータを利用してきましたが、今回の講習では「データとの向き合い方」自体に踏み込むことで、さらに可能性が広がると感じました。踏み込むというのは、データを分解・分析し新たな発見につなげることを意味します。これまでは、一定の目的が達成できればそれ以上深堀りしなかった自分を反省し、今後は偏りを減らしてより深く分析することで、発見の数や他者への探求の深さ、そして説得力の向上につなげたいと思います。単に表面的な理解で終わるのではなく、データから何が見えているのかを追求していく姿勢が大切だと感じました。 業務で分析は活きる? また、業務においては分類・分解・分析が多くの場面で役立つと実感しました。たとえば、目標設定では、市況や需要予測に基づいてシェアや販売量を設定し、その根拠となるデータや分析結果をもとに説明することで、計画の信頼性が高まります。実施計画においては、マーケティング戦略や営業活動の手段、ターゲット、期待できる効果、効果が現れるまでの時間などを細かく整理し、実行者、評価者、受益者それぞれとの連携を明確にすることが可能です。さらに、効果測定では、シェアや販売量・金額と実施計画との因果関係を明確にして、次のアクションの策定や判断につなげることができます。 分析手法を検討する? こうした業務プロセス全般において、データの分類・分解・分析は有効な手法です。具体的には、説明が必要な場面で、利用可能なデータや参考になる情報がないかを常に意識し、検討することが大切です。たとえば需要予測においては、単に過去の推移を見るだけでなく、季節要因や提供者ごとの特徴も踏まえて分析することで、より実効性のある判断が下せると感じました。

マーケティング入門

潜在ニーズを引き出す新戦略の魅力

潜在ニーズをどう見極める? 顧客の潜在ニーズを見極め、それを形にすることの重要性を改めて理解しました。特に、顧客が自分でも気づいていない「潜在ニーズ」を引き出す手法として、行動観察やデプスインタビューが効果的であることを学びました。また、曖昧なニーズに基づく商品開発にはリスクが伴うため、価格競争を避けるためにSTP分析を活用することで、ターゲットの絞り込みやポジショニングの明確化が重要であることが強調されました。さらに、ペインポイントを特定し、それを解消して「ゲインポイント」に変える視点が、新しい価値創造に直結すると感じました。全体を通じて、マーケティング視点の重要性と顧客の立場に立ったプロセス構築の鍵を再認識しました。 顧客接点にどう活かす? 顧客との接点を持つ企画や商品開発、サービス改善の場面で、これらの知識は有用だと感じました。具体的には、顧客が不満や不便を抱える「ペインポイント」を見つけ、それを解消するサービスを提案・実装していくことです。また、STP分析を活用し、自部署が競争優位を築けるポジションを明確にしつつ、顧客の「AIDMAモデル」に沿ったプロモーションを行うことで、効果的なマーケティング戦略を立案することが可能だと感じました。私の業務では営業店が主要な顧客であるため、そこに焦点を当てつつ、次なる顧客層の獲得に向けて行動することが急務です。 既存と新規、どちらに注力すべき? 既存業務の拡充と新規業務に向けた促進行動の両方に目を向け、行動していかなければなりません。既存顧客層については、顧客インサイトの把握が容易な環境にあり、日常の不満点やペインポイントの洗い出しを進めていきます。一方、新規領域においては未知の分野が多く、確定的な判断はできませんが、顧客満足に基づいて利益を得るという学びを活かし、行動計画を図っていくつもりです。

データ・アナリティクス入門

仮説力で見える未来のカタチ

仮説検討は効果的? フレームワークを使って仮説を検討する重要性を改めて実感しました。自分の視点だけで考えると、異なる仮説が実は同じ意味を持っていたり、抜け漏れや重複が生じ、MECE(漏れなく、ダブりなく)にならないことがあると感じました。また、業務では自社の既存データを中心に扱っており、外部のデータと比較する機会が少ない点にも気づきました。一般的なデータにも注意が必要で、信頼性が低かったり数値が大げさに見せられるケースもあるかもしれません。こうした状況だからこそ、学んでいる知識を活かし、有効なデータと信頼できる情報源を見極める必要があると思いました。 動画から何を学ぶ? 先週のグループワーク後に視聴した関連動画で紹介されたさまざまなグラフや分析手法も非常に参考になりました。自分がこれまでなんとなく実施していた方法が当てはまる部分もあれば、これまで注目していなかった視点に気付くこともあり、改めて復習する意欲が湧きました。 実務で新発見は? 実務では、指示通りに同じグラフを作成することが多い中、自分自身でフレームワークを活用して仮説を立て調査することで、新たな発見につながる可能性を感じています。現在の職場では、これまでにない未来的な取り組みが多く、自社の過去のデータだけでは捉えきれない視点が必要だと再認識しました。大きな歴史的流れに沿った視点も、今後の改善に大いに役立つと考えています。 改善策の検証は? まずは、フレームワークを用いて「どの部分が改善され、会社の売上に貢献できるか」という仮説を立て、データの収集と検証に取り組みたいと思います。また、データだけに頼らず、職場の改善点や取り組みについても多角的な視点を持って検証することで、会社全体の業績向上だけでなく、自分自身の成長につながる発見があると期待しています。

データ・アナリティクス入門

データに基づく問題解決法を学んだ充実の時間

分析の基本を理解するには? 講座全体を通して学んだことのポイントは以下の通りです。 まず、分析についてです。分析とは、比較することと同義です。そして、問題解決のプロセスにおいては「What→Where→Why→How」の順序で進めることが重要です。平均値を見る際には、そのばらつきにも注意を払いましょう。対策を決定する際には固定的にせず、柔軟に対応することが求められます。また、生存者バイアスに影響されないように注意し、生存者と非生存者の両方に目を向け、データの分布全体を分析する必要があります。結果を他人にわかりやすく伝えるためには、データのビジュアル化が有効です。 戦略策定で役立つ方法は? 次に、下半期の戦略策定です。クライアントの下半期戦略を作成する際に、講座で学んだ分析のフレームワークを活用することができます。 データをどう活かすか? さらに、分析結果の資料への落とし込みについてです。クライアントの意思決定を支援することを目的として、データの見せ方に工夫を凝らします。 データ分析の効率化を目指すには? データ分析のやり方の向上も重要です。AIなどのツールをうまく活用することで、精度の高い分析を短時間で実施します。必要最低限の情報をもとに素早く答えを出して実行する。このサイクルを多く回すことで、最短で最大の効果を生み出すことが可能です。 効果的なデータ伝達法は? 最後に、データ分析結果の伝え方についてです。対峙する相手は数値分析を本職としていないことが多いので、単なる数値の伝達だけでは不十分です。データを可視化し、クライアントの課題を踏まえたフォーマットに変換します。クライアントが知りたいのはビジネス上のインパクトです。そのため、ビジュアルで見せたり、ビジネス言語で表現して、一目で理解できるようにすることが重要です。

データ・アナリティクス入門

現状と向き合う、理想への一歩

ありたい姿とギャップは? 今回の学びでは、問題解決プロセスの重要性を改めて実感しました。まず、「ありたい姿」と現状のギャップを明確にすることが、課題の適切な設定につながると感じました。これはデータ分析のみならず、さまざまな業務に応用できる考え方です。 どう課題を分解する? 課題を分解する際には、各要素に分けるためにロジックツリーを活用し、MECEを意識して重複や抜け漏れがないように整理する手法が非常に有効でした。また、問題解決のプロセスをWHAT(何が問題か)、WHERE(どこに問題があるか)、WHY(なぜ問題が生じたのか)、HOW(どのように解決するか)の4つのステップに分けて考える方法は、実践的かつわかりやすいと感じました。 現状と理想はどう? 分析を始める前に現状と理想のギャップを把握することで、無駄な作業を省き、重要なポイントに的を絞った課題設定が可能です。他の人が設定した課題も一度自分で見直す習慣をつけることで、見落としが防げると考えています。 目標はどう捉える? また、自身の目標設定において、ただ数値を追うのではなく「あるべき姿」を明確にすることが、戦略的なアプローチへとつながります。たとえば、ソフトウェア導入時には現状の課題を整理し、導入によって解決すべきポイントを明確にすることで、より合理的な選定ができると実感しました。このスキルを業務全体に活かすことで、より本質的な課題解決が可能になるでしょう。 手法はどう共有? 最後に、今回学んだ問題解決の手法を部内で共有するつもりです。今までのケースバイケースの対応を見直し、データをもとに客観的かつ一般的な対策を検討するアプローチの普及を目指します。ただし、過去に特定の調査で効果が得られなかった経験もあり、状況に応じた柔軟な対応が求められることも実感しています。

データ・アナリティクス入門

生の声で伝える挑戦日記

代表値と散らばりとは? 大量のデータを分析する際には、中心的な特徴を示す代表値と、データのばらつきを示す散らばりの両面からアプローチすることが重要です。代表値には、単純平均、加重平均、幾何平均、中央値があり、それぞれの特性を理解した上で適切に活用する必要があります。一方、データの散らばりを把握するためには標準偏差が用いられます。標準偏差とは、平均値から各データがどの程度乖離しているかを示すために、各乖離の二乗和をデータ数で割った値の平方根を意味します。 看護国家試験対策はどうする? 看護師国家試験対策では、4年生進級までの過去の成績を分析し、不得意な科目や分野を特定した上で重点的に補強する方法が提案されます。また、入学試験志願者の選抜においては、成績、出席日数、欠席理由、さらには高校卒業までの活動や志願理由を詳しく分析し、入学前教育に効果的に活かすことが期待されます。 早期支援の進め方は? さらに、早期からの継続的支援として、1年生前期の履修成績を把握した上で夏休み中に補習を実施し、後期終了後にも同様の取り組みを行うことが検討されています。これを各学年で実施することで、4年生にまとめて行う短期間の国家試験対策よりも、より効果的な成果が見込まれます。この取り組みは、大学の教務委員会や国家試験対策委員会に提案し、全教職員の協力のもと、実施体制と行動計画を整えることが前提となります。 書類評価の観点は? 加えて、現在提出される入学試験受験者の書類について、評価の見方や押さえるポイントを明確にすることが提案されています。これにより、入学制度に対するリアリティショックを軽減し、学力不足の傾向に対しても適切な対応策を講じることが可能になると期待されています。現時点では、入試広報部と連携してこの問題に取り組む方針が進められている状況です。

クリティカルシンキング入門

伝わる文章、ヒント満載!

文章作成の何を意識? 文章を書く際に、「主語」「述語」「文の長さ」などの要素に注目することで、読み手にわかりやすい文章が作れることを学びました。また、誰に向けて書くのか、読み手がどのような背景を持つのかを意識し、適切な理由付けを行うことで説得力を高められると感じています。 説得力はどう磨く? また、直接の対話や文章で情報を伝える際には、複数の根拠を整理し、どの理由が説明に最適なのかを検討することが大切だと実感しました。そのための手法として、ピラミッドストラクチャーを活用し、まずは書き出す習慣を身につけることが効果的だと思います。 業務伝達はどうする? 実際の業務では、誰に対して伝えるかによって活用方法を工夫する必要があると感じています。たとえば、Team内や1on1のシーンでは、伝えたい内容を根拠に基づいて整理し、順序立てて説明することを心掛けています。その際、対面での口頭説明が適しているのか、メールやメッセージでテキスト化した方が説得力が増すのか、ケースバイケースで使い分け、または併用するように努めています。 課題管理のポイントは? Teamメンバー個々の成長課題が異なるため、具体的な課題を書き出し、ピラミッドストラクチャーを活用して適切なマネジメント方法を見出すことも重視しています。同様に、具体的な営業戦略を立案する際も、達成すべき問いを実現可能な行動レベルまで落とし込むため、何度も書き出して分析し、上司や同僚とのディスカッションを通じて新たな根拠や結論のアイディアを取り入れるプロセスが重要だと感じています。 キーメッセージは何? 最後に、ピラミッドストラクチャーを作成する際に、根拠としてどのキーメッセージを選ぶかで悩むことが多いです。皆さんがどのように工夫しているのか、ぜひ意見を聞いてみたいと思います。

データ・アナリティクス入門

仮説習得が拓く未来の学び

仮説はどう活かす? スピードや精度を向上させるためには、分析の初期段階で仮説を立てることが重要だと学びました。結論に向けた仮説と問題解決のための仮説という二種類の仮説があり、それぞれ目的や時間軸に合わせて使い分けることが求められます。 フレームワークってどう活かす? また、3Cや4Pなどのフレームワークを活用することで、思考が整理され、仮説形成が容易になると感じました。仮説に沿って必要なデータを抽出し、場合によっては新たにデータを取得するプロセスは、効果的な分析の基本と言えます。数字で見えにくい効果も、可能な限り数値として示すことで説得力が増し、合理的な判断材料となります。 数字で信頼はどう? 具体的には、コンバージョンレートなどの数値計算により、直感だけに頼らず理論的な判断が可能となります。フレームワークを用いることで、業務のスピード感と精度が向上した経験もあり、反対意見を含めた多面的な情報収集が仮説検証の信頼性を高めると実感しました。 新機能はどう検証する? さらに、新機能をリリースする際には、3Cの観点から分析して優先度を明確化したり、施策ごとの「影響度×実行難易度」を評価することで、迅速な判断を下しています。ユーザーインタビューにおいては、どの層のユーザーがどのフェーズで不満を感じているかを仮説から検証し、具体的なデータに基づいて問題点を抽出する工夫も行っています。 仮説と判断はどう連携する? 週に一度、仮説をもとに業務課題を整理し、必要なデータを洗い出すワークシートを作成するなど、日常的な業務の中でも「仮説→データ→判断」の流れを徹底しています。毎月、ユーザーアンケートやインタビュー結果の分析から改善案を提案し、社内でのレビューにてその流れを共有することで、施策の精度や実行力の向上に努めています。

戦略思考入門

ビジネスフレームワークで広げる視野

フレームワークはどう活かす? 戦略的に考えるためには、単にアイデアを出すだけでなく、ビジネスフレームワークを活用して広い視野で整理していくことの重要性を再認識しました。組織としての判断やアクションを決定する際、関係者が納得しやすくなるためにもフレームワークを用いることが役立ちます。ただし、講義で指摘された通り、全ての関係者が100%納得することは非常に稀であり、フレームワークを用いても意見の相違や議論の発散が生じることは多々あります。重要なのは、考えを整理すること自体が目的にならないようにしつつ、フレームワークを効果的に活用することです。 3C分析は何を示す? 人事業務を担当している私にとって、3C分析は採用アプローチを検討するうえで非常に有用です。また、人事制度の企画や組織・人材開発においては、SWOT分析を活用し、外部要因・内部要因それぞれの強みと弱みを認識した上で、強みを伸ばす施策や弱みを克服する施策を考えることができます。しかし、分析の結果が人事部内で正しいとされても、それが実際に望ましいものかは限りませんので、各事業部と共有して修正を加えながら進めることが求められます。 目的設定は合致してる? 主に教育研修を担当している私は、施策を企画する際にSWOT分析を行っています。研修となると手段、つまりどのプログラムを実施するかに目が行きがちですが、目的を見誤らないためにも分析が重要です。対象者の現状を適切に認識した上で目的を設定し、その目的に沿った研修プログラムを構築していきます。また、組織・人材開発で新たな施策を企画する際には、途中で反対に遭ったり、運用面で困難が生じ頓挫することが多くあります。そのため、バリューチェーン分析によりどのプロセスがネックになっているのかを特定・分析していくことが必要だと感じています。

戦略思考入門

集合知で描くSWOT活用の新視点

フレームワーク活用の理由は? フレームワークを知っているだけでは意味がありません。特にスタッフ部門では、直接的に活用できる場面は限られているように感じていました。しかし、具体的な活用ポイントや事例を学ぶことで、SWOT分析やその他のフレームワークも、読み替えや置き換えによって適用できる場面があるのではないかと考えるようになりました。 集合知はどう作用する? また、集合知の重要性も深く心に残りました。意見が食い違う場面は日常的にありますが、それを単なる困難と捉えるのではなく、多面的な認識が得られ、議論を通して考えが洗練され、抜け漏れの防止にもつながるというポジティブな側面に着目し、有難く享受していきたいです。 体制強化の再評価は? これから取り組みたいのは、現在の体制強化の進め方についてのSWOT分析を通じた再評価です。漠然と正社員を補充するだけでなく、効率と効果の両面で新たな気づきが得られるのではないかと期待しています。また、個々がプロとして働くことから、プロ集団として組織全体で取り組むというマインドチェンジも重要です。現状ではすべてをみんなでやろうとするのは難しいかもしれませんが、メンバーの負担を軽減し、集合知の重要性を訴えながら適切な雰囲気を作ることが必要だと考えています。これは長期的な課題かもしれませんが、戦略的に最短で進めることを目指します。 SWOT分析はどう機能? まずは自組織のSWOT分析を実施し、その結果を基に体制強化策の見直しを行いたいと思います。集合知を活かす組織づくりに向けては、この研修での学びや気づきを月次会議で共有することから始めたいです。また、私自身が「一緒に仕事をしたい」と思われるような人間性と振る舞いを心掛け、日々、明るく元気に取り組むことを意識していきたいです。

データ・アナリティクス入門

データ分析で実現する未来の可能性

比較の重要性とは? データ分析において、比較は極めて重要な要素です。要素を整理し、性質や構造を明確にすることで、なぜ「良い」あるいは「悪い」と判断されるのかを理解することができます。判断するためには、特定の基準や他の対象との比較が必要であり、比較を通じて初めてデータに意味が生まれます。 目標設定の重要性 分析には目的や仮説の明確な設定が不可欠です。分析の目的が曖昧であったり、途中でぶれてしまうと、都合の良いデータばかりを使う危険性が生じます。また、不要な分析に時間をかけてしまうリスクもあります。したがって、「何を得たいのか」という分析の目的と、それに必要なデータの範囲をしっかりと見極めることが必要です。 データの特性と可視化 データは質的データと量的データに分類され、さらにそれぞれ名義尺度・順序尺度または比例尺度・間隔尺度に分解できます。それぞれのデータの特徴を理解し、注意しながら扱うことが重要です。異なるデータを組み合わせることで、ひとつのデータだけでは見えてこなかった新しい情報を得ることが可能です。これらを効果的に可視化するために、グラフを利用しますが、グラフには適した見せ方があります。例えば、割合を示すには円グラフが、絶対値の大小を比較するには棒グラフが適しています。 新プロダクトの市場分析 現在、私は新しいプロダクトのリリースによって市場規模がどれだけ拡大するかについての分析を進めています。分析結果を基にした組織全体でのコンセンサス形成が不可欠であり、そのためには分析結果をわかりやすく可視化することが重要です。講義で学んだ内容をもとに、収集したデータをEXCELで整理し、グラフで可視化する予定です。どのデータをどのグラフで可視化するかは、講義の知識を活用しつつ、基準の設定も意識しながら判断しています。
AIコーチング導線バナー

「分析 × 効果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right