データ・アナリティクス入門

原因探索で拓く学びの未来

なぜプロセスを分解する? WEEK05「原因を探索する」では、まず一連のプロセスを分解して、各段階の転換(例:表示からクリック、クリックから体験レッスンへの導線)について整理する手法が紹介されていました。次に、問題の原因を探るために、企業戦略だけでなくそれ以外の要因も視野に入れる「対概念」の考え方が示され、幅広い視点での分析が求められていることが分かりました。 どうして要因に注目する? また、原因探索の際には、コストやスピード、意思疎通といった項目を重要度に基づいて重み付けし、最もインパクトのある要因に注力することが提案されています。さらに、少ない工数でかつリスクを抑えて改善を実施できるA/Bテストによるランダム化比較実験の実施方法も取り上げられ、実践的なアプローチとして評価されていました。加えて、ファネル分析により、ユーザーの行動プロセスを段階ごとに可視化し、どこでユーザーが離脱しているのかを実数と比率の両面から明らかにする手法も理解できました。 この事例はどう見る? 一方で、筆者自身が携わる自動車部品メーカーの事例では、採用ファネル管理表の作成が依頼されながらも、実際の元データが分散・乱雑な状態にある現状が語られていました。採用プロセスの各段階(応募者数、書類選考、面接、内定)の実数と割合を把握し、Excelやグラフ化ツールを使って直感的に状況を捉え、進捗管理やボトルネックの特定、採用プロセス全体の効率化と品質向上を目指すという目的が明確にされています。 なぜデータ整備が必要? そのため、まずは不要なデータの削除、重複データの統合、欠損データの処理、書式や値の統一など、元データの整備に着手する必要があります。加えて、着手前には「なぜ採用ファネル管理表が必要か」を改めて検討し、採用業務全体に問題がないか、他の角度から問題が発生していないかを確認する重要性が強調されていました。 分析の重要性は何? 今回の学びを通して、分析の基本プロセスである「what, where, why, how」を行き来しながら、各ステップにしっかり向き合うことの重要性を改めて認識することができました。

戦略思考入門

戦略的思考で未来を切り開く

戦略的思考とは何か? 戦略的思考を意識するために、これまでに仕事を通じて戦略的だと感じた上司や同僚の姿を思い浮かべることにしました。彼らに共通しているのは、目指すべき姿を明確に言語化し、それをメンバーと共有している点です。さらに、目的達成に必要な行動を具体化し、関係者を巻き込みながら必要な影響を整理して交渉の材料としています。このような方々の姿勢を学び、具体的な形で自分の中に落とし込んで学習を進めたいと考えています。 経験をどう活かすか? 戦略的思考を学ぶ目的は、自分の仕事に活かすことです。そのために、自分の経験と結びつけることでより深い理解を目指しています。 今年度の組織課題は? 現在の組織に対しては、本質的な課題と目標を明確にした上で進むべき道を考えていきたいと考えます。今年度は一部の組織機能の統合を試みたものの、効果が十分かどうか、あるいは不足している部分を分析しきれていない状態です。また、自社の強みと業界内での差別化ポイントがまだ不明確であり、目指すポジションをしっかりと定める必要があります。次年度の方針を2026年4月を視野に入れながら決定し、1年間の施策を具体的に立案し進めていきたいです。 プロジェクトの見直しが必要? 社内で関わっているプロジェクトに関しては、現在の活動が場当たり的であると感じています。変化を促したい対象を絞り込み、ゴールから逆算して施策の内容やスケジュールを考える必要があります。 なぜゴール設定が重要か? 自分にとって特に意識すべきことは、「先を見据えゴールを明確にする」ことです。具体的には、次年度の方針を策定する際、2025年度末に達成したいゴールを設定し、それに向けた方針を検討します。そのためには、組織改革や業務整理が重要ですが、これには時間と労力がかかります。優先順位付けとスケジュールを重視し、やるべきこととやらないことを区別します。そして、アクションプランを立て、定期的に振り返りを行いながら進めることで、ブレや滞りがないか確認することが大切です。その過程で、戦略的思考で学んだことが反映できているかを自身で確認し、実践に繋げていきます。

クリティカルシンキング入門

イシューの本質を見抜き、問題解決に挑む

問題解決の問いは何か? 戦略策定ケースを通じて、どのような問いを立てるべきかや、打ち手をどう打つかという貴重な経験を得ることができました。特に学びになったのは、まず最初に問いを立てることの重要性です。業績が伸びないといった大きな問題を解決する際には、問題の構成要素(単価、来店客数、店舗数など)の整理、いわゆる構造化と、自社の現状を把握することが必須です。その中で打てる打ち手を、分解した課題ごとに考えていくことや、状況によってイシューが変化することも学びました。 クライアント分析の着眼点 クライアントの状況を分析し、「何が課題なのか」を発見した上で打ち手を考案していく場面では、必ずイシューを押さえた上で打ち手を考案するように心がけます。また、自分自身もクライアントの就業環境に関するプロジェクトや幅広い年代の活躍を推進するプロジェクトに参加しているため、そこでの行動にも今回の知識を活用していきたいです。 会議でのファシリテーション術 会議のファシリテーションをする際もイシューの設定や、イシューを常に押さえていることが重要だと感じました。「このイシューで合っているか」を仲間と検証しつつ、意見や会話の方向性がイシューとずれている場合は修正するように心がけます。 情報収集の重要性とは? 思考を始める際には、「イシューは何か」をまず考える癖をつけます。そのイシューが本当に適切かどうかの精度を高めるため、チームで情報共有しフィードバックをもらいながら仕事を進めることも重要です。適切なイシューの設定及び打ち手を特定するには、マーケット全体や自社の状況など多様な情報を持っている必要があると感じたので、これらの情報を積極的に収集する癖をつけること、「この情報がないと適切な問い設定ができない」という視点を持って問題解決に臨むことを意識しています。 打ち手を遂行する際の心得 実際に決定した打ち手を打つ際、行動の中で方向性が見えなくなることもあるでしょう。その場合、「このイシューに基づき、こういう効果を期待して行動している」という点を意識し直し、最後まで打ち手をやり遂げることが大切だと感じました。

データ・アナリティクス入門

納得するだけではなく、行動に移そう!

ストーリーの重要性は? 今回の講義で最も印象に残ったのは、「やみくもに分析しない。ストーリーが大事」という点です。今まで意識していなかったwhereで傾向を掴み、どこまで掘り下げられるかという部分に気付かされました。whereを浅くしすぎるとwhyがまったく意味をなさなくなるため、問題がどこにあるのかという点にもしっかり目を向けたいと思います。 「わかる」と「できる」の違い 全体の講義を通じて感じたことは、講義や動画の内容に対して納得できる部分が多々あったということです。毎回わかっているつもりでしたが、実際に演習をしたりグループワークで意見を交換したりすると、うまくいかない場面が多いことに気付きました。「わかる」と「できる」は全然違うということを改めて実感しました。 賃金制度見直しのポイント 来期に向けた賃金制度の見直しに際して、以下のポイントを意識して分析したいと思います。まずは①自社の賃金制度のどこに問題があるのか、次に②なぜそのような問題が発生しているのか、最後に③どうすれば理想の姿に近づけるのかです。これらを講座で学んだことを活かし、具体的な賃金制度案を示していきたいです。 仮説からのデータ集め方とは? また、自身および一緒に働くメンバーに対しては「仮説➡データ集め➡検証」という明確な流れを意識することが少ないため、今回の学びを共有し、効率的・効果的に課題解決のステップを踏めるチームにしていきたいと考えています。 学びを日常に活かすには? チームで共有するためには、まず自分がしっかりと理解し、使えるようになることが大切です。学んだことがまだ全然身についていないため、まずは学んだ内容をもう一度振り返り、ポイントを整理し、日常業務や生活の中で1日1回は必ず実践することを意識したいです。特に「仮説を網羅的に立てること」、「何と何を比較すれば得たい結果が得られるのか、比較対象を設定すること」、「条件を揃えて比較すること」といった点について意識しながら日々考える習慣をつけたいです。

戦略思考入門

学びを活かす!目標設定とフレームワークの力

どうして成長できた? 1週間の学びを振り返る演習でした。最初に学んだ内容は覚えていると思っていましたが、一部忘れていた部分もあり、見直すことができてよかったと思います。学んだだけではスキルとして身につかないことを改めて実感したので、積極的にアウトプットを行い、生きたスキルにしていくことを意識しています。 どんな目標を持つ? さまざまな学びの中でも、特に印象に残ったのは目標を設定して取り組むという考え方です。仕事を進める上でKGIやKPIを設定するのは自然なこととして行っていますが、実際には目標を設定せず、思考が雑然としていることが多いと感じました。常に自分が何のために考えているのか、何を目標にして業務を行っているのかを明確にすることが、最短のルートであると再認識しました。 フレームはどう使う? また、フレームワークについても、その定義を再確認し、曖昧な知識で使わないことを意識しました。フレームワークは、先人の思考が形になったものだからこそ、「使うこと」に固執するのではなく、自分の思考を整理するための補助ツールとして活用していきたいです。フレームワークをしっかり理解した上で使うことで、他者にも納得感を持って伝えられると思います。 業務の取捨選択は? チームメンバーが少なく、タスクが多い状況だからこそ、どの業務を続け、どの業務を中断するかを学んだ知識とフレームワークを活用して見極めていきたいです。そのためにはマクロな視点で目標を設定し、達成までの最短ルートを分析することが大切です。また、その考え方を一つの真実とするのではなく、自身の思考を常に疑い、判断力を磨いていきたいです。 本当に最短か? 具体的には、マーケティング施策を立案する際に必ず目標設定とKPIを設け、ミクロな視点で業務に関わりがちな現在の立場でも、マクロ視点を意識するよう心掛けます。そして、常に「本当にそれが最短なのか」を問い続けることが必要です。また、フレームワークの概念を理解し、仕事だけでなくプライベートでも疑問や解決したい出来事に対し、自身の考えをフレームワークで整理できるようになりたいです。

戦略思考入門

視野を広げる3CとSWOTの活用法

顧客優先は正しい? 私は営業部門で勤務しているため、「顧客ニーズ」を優先することが多く、それが視野を狭くしてしまうことがあることに気づきました。事業計画を考える際には、以下の3つの視点を持つことが重要であると感じています。 全社視点は大事? まず、経営者の視座で考えることです。自分が発言する際には、常に全社的な視点を意識しながら行動することが求められます。次に、ジレンマを過度に恐れないことです。100%正しい判断は難しいので、ベストを求めすぎるよりもベターを選択する柔軟性を持つことが重要です。そして、他人の意見をしっかりと聴く姿勢も欠かせません。 フレーム活用でどう? これらの考え方に加えて、フレームワークを活用することで、施策を客観的に考えることができ、取りこぼしの少ない計画を立てることができました。それらのフレームワークは、3C分析で顧客、市場、自社、競合を整理し、PEST分析で外的環境を考慮する手法、SWOT分析で内部環境を整理し、クロスSWOTで重要課題を抽出し、バリューチェーンで企業活動を一覧化するものです。これにより、視野が広がり、現実的な意見を出すことができました。 業務量はどう管理? また、日常業務ではアフターフォローによる業務が多く、期待が高まる中で増える業務量への対応が課題となっています。この問題についてもバリューチェーンを作成することで、どの業務に重点を置くかが明確になり、社員全員が納得しやすくなると思います。また、やることだけでなく、やらないことを決める際にもバリューチェーンは有効だと考えます。 施策はどう練る? 具体的な施策としては、自社更新率を高めるために3C分析やクロスSWOTを用いて現状の課題を明確にし、解決策を検討しています。施策を考える際には、経営者の立場で全社的な視点を持つことを心がけ、自己部署内や他部署からも意見を聴き、多角的なアイデアを引き出すことが重要と感じています。現状の業務フローをバリューチェーンで可視化し、資源の浪費を防ぎ、コストを抑えるべきポイントを特定することも進めています。

データ・アナリティクス入門

仮説で拓く!多角的学びの道

分解で何が見える? 今週の学習でまず印象に残ったのは、問題の原因を明らかにするためにプロセスを分解する考え方です。以前学んだロジックツリーと同様のアプローチで、複雑な問題も整理しやすくなる点が非常に参考になりました。 A/Bテストの本質は? また、初めてA/Bテストについて学びました。Webサイトやアプリの改善において、2つのパターンを比較してどちらが効果的か検証するこの手法は、データに基づいた改善策を決定する上で非常に有用だと感じました。 対概念で広がる視野は? さらに、対概念という考え方も学びました。対象となる事象の反対の観点を同時に考えることで、物事を多角的に捉え、より本質的な理解につながるという点が印象的でした。 患者動向をどう分析? 診療科別の患者受診動向データ分析に関する学習内容も非常に有益でした。分析の視点に差異が生じた場合に、仮説に基づいて問題解決のプロセスをWhat(問題の明確化)→Where(問題箇所の特定)→Why(原因の分析)→How(解決策の立案)のステップで進めることで、より精度の高い分析が可能になると理解しました。これまではいきなり解決策を検討することが多かったため、本質に迫った対策を導き出す点で大きな学びとなりました。 仮説と実試行は? また、現時点ではA/Bテストの具体的な活用場面はイメージしづらいものの、仮説を試しながら問題解決につなげる考え方が日々の業務にも応用できると感じています。 比較で見える分析法は? 分析の基本的な進め方については、「分析は比較である」という考え方のもと、①目的・問いの明確化、②問いに対する仮説の設定、③必要データの収集、④分析による仮説の検証というサイクルを回すことが重要だと学びました。インパクト、ギャップ、トレンド、ばらつき、パターンなどの視点にも着目し、グラフや数値、数式を用いて視覚的に分かりやすく情報を提示することが求められます。仮説思考やフレームワークを活用して多角的に検討することで、データから有益な情報を引き出し、効果的な行動につなげることができると実感しました。

マーケティング入門

顧客理解を深めるデプスインタビューの力

顧客ニーズは本当に? 実際の事例を通じて、顧客の真のニーズを理解することと、自社の強み・弱みを把握することの重要性を改めて学びました。私は日頃からマーケティングと営業に携わっており、顧客と直接会話することで彼らを理解しているつもりでいました。しかし、実際にはその理解が浅かったと感じています。デプスインタビューや行動観察などの手法を学び、これらを実践することで、顧客の本当のニーズをより明確に捉えていきたいと思います。また、自社の提供するプロダクトに関してはある程度の理解があるものの、内部資源の理解はまだ浅いと感じています。バリューチェーン分析などのフレームワークを活用し、自社の強みと弱みをバランスよく見直したいと思います。 理由はどう伝える? 顧客からの声を社内の開発担当にフィードバックする際には、単に求められた機能を伝えるだけでなく、その背後にある理由を深く掘り下げることで、顧客の本当のニーズを捉え、それを社内に還元していきたいです。そして、顧客の声を基に、どの機能を優先的に開発すべきかを提案する際には、単に要望の多さで決めるのではなく、自社の強みを活かし、マーケティングのコアとなるような魅力的な機能を提案していきたいと思います。 ペインはどう解消? プロダクトのプロモーションにおいても、単なる機能紹介にとどまらず、顧客が実際に困っていることやペインポイントをしっかりと理解した上で、それを解消するイメージを具体的に提案できるよう、ネーミングや訴求文を工夫していきたいです。 必要機能は何故? 営業の場面で顧客から機能の要望を受けた際には、なぜその機能が必要なのか、具体的にはどのような業務に困っているのかを深くヒアリングしたいと考えています。また、顧客の業務現場を訪れ、実際に困っているポイントを自ら見つける機会を積極的に作りたいと思います。 体制はどう評価? 自社の理解を深めるためには、プロダクトの機能だけでなく、開発から提供までの体制や内部資源を再評価し、バリューチェーン分析を活用して、内側からの視点の偏りを無くして強みを整理していきたいです。

データ・アナリティクス入門

ロジックで広がる学びの扉

MECEの意味は? MECE(ミーシー)とは、Mutually Exclusive and Collectively Exhaustiveの頭文字をとった言葉で、情報を漏れなく、ダブりなく整理する考え方です。この考え方は、多角的な問題分析や意思決定の際に、体系的に物事を捉えるための基盤となります。 ロジックの本質は? ロジックツリーは、複雑な問題や課題を階層ごとに分解し、問題の本質を明確にするためのフレームワークです。原因分析や解決策の立案、さらには意思決定プロセスにおいて、整理された視点を提供し、効率的なアプローチをサポートしてくれます。また、英語では「A Logic Tree」と表現され、複雑な事象を小さく分解することで全体像を把握しやすくしてくれる役割を果たしています。 SNS目的は何? 具体的にSNSプロモーションの計画においてこの手法がどのように活用されるかというと、まず中心となる目的、例えばエンゲージメントの向上やサイトへの誘導、フォロワーの増加などを明確に設定します。次に、その目的を達成するための主要戦略を大きく整理します。ここでは、コンテンツの質と種類、ターゲットとなるユーザー層、投稿のタイミングや方法などの要素が検討されます。 戦略の具体策は? さらに、各戦略を具体的なアクションプランに落とし込みます。たとえば、コンテンツ戦略では掲載する投稿の形式(画像、動画、テキスト)やテーマ、投稿頻度などが挙げられ、ターゲット戦略では、狙う世代やコミュニティとの交流方法を明確にします。そして、配信戦略についても、投稿の最適な時間帯や利用するプラットフォーム、必要に応じた広告の活用法などを細分化して整理します。 効果はどう評価? 最終的に、実行に移した各施策の成果を週ごとや月ごとに評価し、反応の良いコンテンツを強化しながら戦略の見直しやアップデートを行うことで、効果的なプロモーション計画が完成します。こうしたプロセスを通じて、ロジックツリーはSNSプロモーションの行動計画をより具体的かつ体系的に策定するための強力なツールとなります。

データ・アナリティクス入門

データ分析で見つけた新しい視点と手法

なぜデータ分析の目的が重要? 今回の講座を通して、データ分析の方法について新たな視点を得ることができました。これまでは、やみくもにデータ分析に取り掛かりがちで、HOWにばかり目を向けていましたが、まずは目的や問題点を特定し、そのうえで分析を進める重要性を認識しました。また、複数の仮説を持ち、それを検証するプロセスも新たな学びとなりました。この講座を通じて、アウトプットの重要性も改めて実感しました。インプットしたことはすぐに忘れてしまうため、学んだことを自分の言葉にする時間を確保し、習慣化することが大切だと感じました。 データ分析のステップとは? 現業務においては、データ分析をプロセスに分けて取り組みたいと思います。具体的には、目的の設定、問題点の特定、原因の分析、解決策の検討というステップを踏むことで、自分の行うデータ分析の目的を明確にし、どのような視点で仮説を考えるべきかをシャープにしていきたいと考えています。 データ分析の型をどう身につける? また、データ分析の型を身につけたいと思います。特定の分析を行う際の型が身についていれば、データ分析の実行が容易になると感じました。例えば、特定の状況で使う分析手法をあらかじめ知っておくことで、効率的に進められるでしょう。 学びを習慣化する方法は? さらに、自身の成長のためにも学びやアウトプットを習慣化したいと考えています。講座を通じて行った振り返りやグループワークでの意見交換は、知識や思考を深める助けとなりました。これを続けて習慣にしたいと思います。 実践知識をどう高める? データ分析の実践知識についてもさらに勉強を進めたいです。他社事例などを参考にしながら、より鋭い経営分析や戦略検討ができる基盤を築けるよう努力します。 BS項目の分析はどう進む? 特に、まだ分析が進んでいないBS項目については、プロセスに則って分析し、課題解決に取り組む予定です。また、週に1度はアウトプットの日を意識的に作り、学んだことを整理し、反省点や来週の目標設定を行う時間を確保したいと思います。

データ・アナリティクス入門

仮説検証で切り拓く未来

仮説検証はどう進める? 原因についての仮説を立て、その検証のためにデータを集積することは、とても重要なプロセスです。思考の整理には、フレームワークの3C(Client, Competitor, Company)や4P(Product, Price, Place, Promotion)を活用することで、さまざまな視点から情報を捉えやすくなります。また、データの集積方法としては、複数の仮説を構築し、比較するためのデータを収集すること、さらには反論を排除できる情報まで踏み込むことが求められます。 仮説思考って何? 仮説思考には「結論の仮説」と「問題解決の仮説」があり、特に後者はWhat > Where > Why(原因追及) > How(Solution)の順序で検証することで、その精度を高めることができます。これまでは、業務上の課題に対し、2~3の情報のみで仮説検証を行っていたため、フレームワークや仮説プロセスを十分に活用できず、深堀りができていなかったと感じます。 情報の正確さは? 複数の視点から検証を行うことで、偏りのない包括的な情報が得られると同時に、正確なデータと信頼性の高い情報源へのアクセスの重要性を改めて認識しました。不正確な情報による誤解を避けるためにも、情報の正確さは不可欠です。 過去の教訓は何? 過去の業務を振り返ると、複数のデータベースを活用していたため、データ統合の正確さや集積時点の一貫性が取れていなかったことを反省するとともに、自分のデータ分析に対する知識不足を痛感しました。今後は、正しい仮説を立てることで説得力を持たせ、より正しいアクションへと結びつけていきたいと考えています。 実践で学ぶ仮説は? また、日常のさまざまなシチュエーションにおいても仮説検証を実践し、Week4で習得した知識を無料研修などの実践の場で活用していくつもりです。問題解決の仮説プロセス(What > Where > Why > How)を業務に取り入れることで、仕事の分析や効率、精度の向上につなげていきたいと思います。

データ・アナリティクス入門

AIDAとAIDMAを理解して見直す購買行動

AIDAとAIDMAの区別は? 「AIDA」と「AIDMA」の違いについて学んだ結果、これまで曖昧だった理解が整理されました。 AIDAの流れはどう? AIDAモデルは、顧客が商品やサービスを購入するまでのプロセスを4つの段階で説明します。最初のAttention(注意)では、消費者が商品やサービスに興味を引かれる段階で、広告やプロモーションが効果的です。次にInterest(興味)で、消費者はさらに情報を求めます。Desire(欲求)の段階では、消費者の心に商品を手に入れたいという欲求が生まれ、最後にAction(行動)で、実際に購入に至ります。 AIDMAは何を重視? AIDAとAIDMAの違いも明確になりました。AIDAは購買行動にフォーカスしていますが、AIDMAは購買前の心理プロセスと記憶を重視しています。AIDMAは消費者が購入に至るまでの詳細な心理プロセスを分析するために適用されます。 ダブルファネルとは? また、「ダブルファネル」という概念についても学びました。これは、パーチェスファネルとインフルエンスファネルを組み合わせたもので、消費者の行動をより詳細に分析することができます。パーチェスファネルは、商品認知から購入までの過程を表し、インフルエンスファネルは購入後の情報発信までの過程を示します。この分析を通じて、顧客行動のボトルネックを特定することが可能です。 クリック率はどう見る? デジタルマーケティングにおいては、クリック率やコンバージョン率の分析が非常に重要です。例えば、当社のWEBサービスのFAQメンテナンスでは、汎用性の高い回答を用意し、0件回答率とミスマッチの原因を分析しています。これにより、顧客満足度の向上を図ることができます。また、掛け合わせたデータを用いて、NPS(ネットプロモータースコア)の向上方法も模索しています。 実務にどう活かす? これらの知識を実務に活かすことで、FAQの分析やマーケティング施策の改善に役立てていきたいと考えています。

「分析 × 整理」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right