データ・アナリティクス入門

現場で磨く仮説思考の実践

具体的演習の魅力は? 総合演習の課題解決は非常に具体的で、これまでの演習と比べると、より深い検討が求められる良い機会となりました。 フレームワーク使用法は? 仮説を考えるプロセスでは、思考の幅を広げるためにフレームワークの活用や対概念の取り入れ方が提示されました。しかし、現時点ではフレームワークの使いこなしが十分ではないと感じ、今後の日々の活動の中で意識的に取り入れていきたいと思います。 A/Bテストの効果は? また、A/Bテストを活用して早期にアクションを起こすことで、得られたデータをもとに仮説をさらに精緻化する取り組みも印象的でした。Web関連の利用場面では活用しやすい一方、現業務にすぐ生かすことは難しいと感じたため、二つの選択肢の中から比較しながら適した選択を見つけるアプローチを取り入れたいです。 問題解決の流れは? 問題解決については、問題に至るまでの流れをプロセスに分解し、どの段階に原因があるのかを明らかにする手法が有効だと実感しました。解決策を検討する際にも、複数の選択肢を洗い出し、根拠をもって絞り込むことの重要性が伝わってきました。 現場実行のコツは? 現在の業務では、大規模なデータ分析による示唆を提示するよりも、現場に近いところですぐに施策を実行することが求められていますが、仮説思考に基づいて複数の仮説を立てた上で行動に移すプロセスを意識的に実践していきたいと考えています。

マーケティング入門

マーケティングの魅力に目覚める学びの旅

マーケティングへの憧れは何故? これまで、漠然としたマーケティングへの憧れや興味があり、多くの書籍を読み、社内の講座に参加するなどして学んできました。しかし、その答えが見つかりませんでした。本講座では事例研究を学び、仲間とディスカッションを重ねることで、初めてマーケティングの面白さやワクワク感を感じることができました。 顧客に認められる喜びとは? 普段の営業現場では、顧客ニーズを考え、ポジショニングを検討して販売する楽しさを感じていました。しかし、売れたことの喜びよりも、ポジショニングの理解を得て顧客に認められた際の感覚が私にとって大きな魅力であると気づきました。これを理解できたことは大きな収穫でした。 マーケティング思考はどこでも活用できる? マーケティング思考はB to Cでないと難しいというイメージがありましたが、実際には選択と集中、差別化という本質が重要であり、どのような場面でも活用できると考えるようになりました。営業の話法展開や課題解決策の検討、自己分析など、今後積極的にこの思考を活用したいと思います。 マーケティング部への転籍を考える理由は? 私のキャリアアップの一環として、マーケティング部への転籍を検討しており、その適性を判断することが本講座の受講理由でした。本講座を通じて「楽しい、やってみたい」という直感を得ることができたため、そのためのプロセスを実行していきます。

クリティカルシンキング入門

問いの力でビジネスを変える!

正しい問いは何? 正しい問いを立てることの重要性を改めて実感したワークでした。Week1で学んだデータの分解やピラミッドストラクチャーは、適切な問いを立てることができて初めて効果を発揮します。イシューを特定することは、一人では難しく、同僚と共同で行うと論点がずれるリスクもあるため、とても難しいと感じました。しかし、「今解くべき問いは何か」を常に意識しトレーニングを続けていくべきだと考えます。 適切なイシューは何? このスキルは、新規サービスやコンテンツ開発、既存サービスの改良にも応用できそうです。業務や事業における課題は多岐にわたるため、イシューを特定するだけでなく、どのイシューに取り組むべきかを決めることが重要です。より本質的な問いを立てる訓練をしていきたいと思います。また、お客様の声から得られる気づきをイシューに結びつけるインサイトに変える能力も向上させたいです。客観的に分析し、一人の視点に偏らないことを常に意識する必要があります。 新たな切り口はどう? 普段行っている顧客アンケート分析において、従来の方法に固執せず、新たな切り口やグラフの選択を検討したいと考えています。さらに、アンケート項目自体の設計も非常に重要だと感じており、実施に移したいです。また、会議では論点を明確にし、その範囲から逸脱しないように議論することを心掛けていきたいと思います。

クリティカルシンキング入門

課題解決の秘訣は「問いのブレ」防止

イシュー特定はなぜ重要? イシューの特定の重要性を改めて実感しました。それ以上に「問い」の方向性をブレないよう意識し続けることの重要性に気付かされました。課題を特定し、イシューを設定した後、実際に分析や議論に移る際、この「問い」がブレることが多々あります。気づけば最初に設定したイシューからずれた議論をしていることが何度もありましたので、改めて見直したいと思います。 データ分析で避けたいミスは? データ分析においては、「問い」の方向性がブレてしまい後で気づき、やり直しが発生することがしばしばです。数字に触れ始めると、「分析」に夢中になり、本来の目的を見失ってしまうことがよくあります。特に注意すべきは「やった気になってしまうこと」であり、過去の経験を通じてこれを痛感しました。この講座を通して学んだフレームワークを意識し、同じ失敗を繰り返さないようにしたいと思います。 言語化の効果とは? 「イシューを押さえ続けること」は「意識」するだけでは難しいため、言語化を必ず意識したいです。言語化することで、自分だけでなく、周りの方との認識統一にもつながります。これができると、自分が「問い」からずれていても、「誰かが気づき」修正してもらうことができます。自身の考えを客観的に見ることは重要ですが、完璧にはできません。常に第三者のヘルプも借りながら進めたいと思います。

データ・アナリティクス入門

分析で見つける未知の可能性

分析開始の目的は? 実際に分析を始める前に、その分析の目的を明確にすることが重要です。目的が曖昧では、分析自体の意味がなくなります。分析の本質は比較にあります。比較を行わなければ、物事の良否を判断することはできませんし、絶対的に良いものや悪いものというものも存在しません。意思決定が相対的な比較によって行われると考えると、分析(比較)の重要性が一層理解されます。 比較対象の選び方は? そのためには、適切な比較対象を選ぶことが必要です。しかし、すべての情報を持っているわけではなく、自分の理解が正しいかもわからないため、この作業は現実としては難しいこともあります。 解決すべき課題は? 分析を通じて解決したい課題は多岐にわたります。たとえば、効果的な授業や学習方法を知りたいとき、また生徒募集活動をどの地域で積極的に行うべきか、生徒や保護者の学校への満足度、勤務校の強みと弱みの分析などです。これらの目的を達成するために、適切な分析を行うことが望ましいです。 どんなデータ収集? まずは、各目的に応じたデータ収集から始めたいと考えています。生徒の成績推移や大学合格実績といった定量分析に加え、アンケートやインタビュー(個人・集団)による定性分析も通じて、データを集め、その中から中核となる特質を抽出するようにしたいです。

データ・アナリティクス入門

分布も味方に!データ分析の学び

平均値と分布への疑問は? 代表値を用いた分析手法が有効であると実感しました。たとえば、平均値(単純平均)を用いることで全体像を把握できる一方、データがどの程度集約されているのか、またはばらついているのかを判断することは難しいため、平均値とデータ分布の両面から検証する重要性を学びました。 データ分布の検証は? データ分布を確認する手法としては、標準偏差が挙げられます。標準偏差の値と集計結果に大差がなければ、分析の正確性が高まると感じました。また、分析内容に応じて単純平均、加重平均、幾何平均、中央値など様々な代表値を使い分けることで、異なる角度からの洞察が可能になることに気づきました。 仮説検証の進め方は? さらに、データ分析は比較を前提としているため、問いやゴールを明確に定め、仮説の設定、データ収集、仮説検証というプロセスを徹底することが大切だと学びました。これを繰り返すことで、より精度の高い結論に到達できると実感しました。 実践例の応用は? また、実践例として、交通系ICカードの決済実績を分析する際には、切り口別に代表値や分布の状況を組み合わせる手法に取り組みたいと感じました。ヒストグラムなどを用いてビジュアル化することで、報告相手にわかりやすく情報を伝える工夫が、今後の分析の質向上につながると考えています。

データ・アナリティクス入門

仮説思考で学びを実践、諦めない心の重要性

仮説思考で成果を出すには? 仮説思考の鍛え方について体系的に学ぶことができ、非常に勉強になりました。毎回同じような学びであっても、体系的に言語化することで再現性が高まるため、自分で実践するにも他の人にアウトプットするにも非常に参考になります。 諦めない姿勢の重要性を再確認 仮説思考の鍛え方を通じて、「諦めず・熱意を持って・仮説を考え続ける」ことの重要性を改めて感じました。理解するだけではなく、それを実際に実践し、成果に結びつけることは非常に難しいです。そのため、「諦めない」ことがもっとも大切であると過去を振り返って改めて感じます。 継続的なデータ分析の意義とは? 経営データのデータ分析については、じっくりと分析する機会はあるものの、継続的には行っていません。課題は次々に発生するため、つい短絡的に結論を出してしまいがちです。これからはしっかりと時間を確保し、仮説検証を繰り返し行って問題解決の精度を高めていきたいと思います。 タスク整理と学びのルーチン化 まずは自分のタスクを改めて整理し、優先順位の低いものは権限移譲するか、削減して時間的余裕を生み出します(9月中に実施します)。また、毎週土曜日は極力「学びと実践」の時間とし、仮説検証を毎週のルーティンとして実践していきたいと考えています(今週から開始します)。

データ・アナリティクス入門

データ分析に固執しない学びの本質

効果検証を改善するには? 今週の講義内容は、すでに実践していることをさらにブラッシュアップして継続する必要があると感じました。特に効果検証については、ノイズを排除しきれずにABテスト自体が難しい場合や、施策の実施数が多く、全ての分析を物理的に行うことが困難な場合があります。 デジタル時代のデータ分析とは? デジタル領域では、質よりもスピードが重要な場面が多くありますので、完璧なデータ分析に固執しすぎないことも心掛けたいです。データ分析はあくまで結果を出すための一つの手段に過ぎず、それ自体を目的としないことが大切だと再認識しました。 仮説思考を磨くために何が必要か? また、仮説思考を鍛えるためには、思考力を磨くことが最も重要だと感じました。情報を集めたり事象を分析しているだけでは、思考の精度は上がりません。本当に必要な情報を見極めるために、何のために情報を集めるのかを自分の頭で考えるトレーニングが必要です。 行動で成果を生み出す方法は? さらに、答えを持っている人に対して自分の仮説を試してみることも大事です。不正解でも良いので、アウトプットする機会を増やし、トライアンドエラーを繰り返すことが重要です。成果は行動することでしか生み出せないため、とにかく積極的にアクションを起こすことが求められます。

データ・アナリティクス入門

実務に活かすMECEで新視点発見

問題解決の難しさに気づく 実践演習を通じて、私は問題特定の際に表面上の情報だけを処理しがちで、問題解決のステップを踏むことが難しいと理解しました。これにより、課題を適切に提起できることが限られていることにも気づかされました。MECEやロジックツリーという言葉は知識として持っていましたが、具体的に活用したことはありませんでした。しかし、MECEはデータを重複なく、漏れなく整理する考え方で、実務でも非常に有効であると感じ、直ちに活用したいと思いました。 新視点での顧客セグメンテーション 実務において、顧客セグメンテーションを考える際、これまでは年齢、性別、居住地などの従来の基準に頼っていました。しかし、MECEの考え方を用いることで、新しい視点からセグメンテーションを検討し、より優れた分析ができる可能性を探りたいと考えています。 新手法の有効性は? 新たな顧客セグメンテーションの手法として、まず取引頻度と勤務先の業種という二つの基準を用いて分析を進めてみます。この二つでセグメンテーションを行い、既存の分析手法と比較することで、その有効性を検証したいと考えています。現時点では、取引頻度や業種に関するデータの分布を十分に把握していないため、まずはどの基準で分類を行うのか、データを確認していきたいと思います。

アカウンティング入門

図と比喩で辿る学びの旅

図式化と比喩の意味は? 図式化の手法が、全体の構造を把握する上で非常に有効であることを再認識しました。また、比喩表現が記憶に基づくイメージ形成に寄与し、内容をより分かりやすくしていると実感しています。一方で、簡単な言葉でシンプルに伝える作業が、意外にも難しいと感じました。短い講義の中にも多くの学びを得られたことを実感しています。 企業財務の背景は? 今後は、関心のある企業の財務情報について、時間軸で「なぜこの結果になったのか」を考察しつつ、相対軸で良否を比較する視点を持ちたいと思います。その背景にある原因や要因を徹底的に把握し、実際のビジネスに活かすための分析を行いたいと考えています。企業で起こったさまざまな出来事や変動の中に、ひそむストーリーを感じ取ることにも挑戦したいです。 決算報告をどう読む? 具体的には、決算報告説明会の内容と決算資料を並行して検証しながら考察を深め、業界内の比較も十分に行うことで、より多角的な視点を獲得したいと思います。さらに、他者とのディスカッションを通じて、理解を深めるとともに新たな気づきを得たいです。 最後に、新聞で興味を持った企業の決算報告資料を過去3年間にわたって読み取り、長期的な視点から企業の動向や変化を捉える訓練を積みたいと考えています。

データ・アナリティクス入門

問題解決の基本を再確認:MECEとロジックツリーの活用法

問題解決の基礎を学ぶ 今週は、問題解決の4ステップ(What→Where→Why→How)のうち、What(問題の明確化)について学びました。目的を見失わないために、あるべき姿と現状のギャップを数値や定量的に示すことが重要です。そのため、MECEを使い、漏れなく重複なく分解して考えると良いということを再認識しました。 分解の難しさをどう克服する? 過去にロジックツリーを学んだことがありますが、MECEを意識しながら何で分解すべきかを羅列するのは難しいと感じています。多くの場合、目の前の情報や限られた知識だけで分解した気になってしまうことが多いです。この課題を解決するために、最近は生成AIを活用し、プロトコルやフレームワークを使って客観的な情報を得る機会が増えています。これにより、自分でロジックツリーを使って分析しつつ、他者やAIから得られる情報を組み合わせて問題を明確化していきたいと考えています。 学びを日常でどう活かす? 毎月の会議資料や日常の部門の問題解決手段を検討する際に、この学びを活用します。ステップを踏んで考え、MECEを意識しながら、広く情報収集し、ロジックツリーを使って情報を分解することで、まずは問題を明確にすることから始めたいです。

アカウンティング入門

数字で解明!経営の未来を握るアカウンティングの力

アカウンティングの重要性とは? アカウンティングは、自社の経営が順調かどうかを数字で判断するために必要不可欠です。現在、私は特にB/S(貸借対照表)の理解が不足していると感じています。P/L(損益計算書)と組み合わせて、今の経営状態が十分であるのか、さらに改善が必要なのかを判断したいと考えています。 経営判断にどう活かす? 具体的には、税理士との話し合いの場での活用を考えています。また、日々の経営判断においては、新年度の給与賃金や役員賞与の決定に影響を与えることになります。今、私が最も重要だと考えている経営課題は、新規雇用に使える予算を具体的に把握することです。特に、遠方からの雇用に際し、住宅補助を提供できる経営状態にあるのか、それとも難しい状況なのかを、以前のように曖昧な方法ではなく、数字でしっかり理解しておきたいです。この点に関して、実際に書き出してみることで納得しました。 学んだ内容をどう活用する? 今後は、学んだ内容を自社の過去1-3期の決算書と照らし合わせながら具体的に分析を行い、すぐに経営判断に活かす必要があります。そのため、学んだことは可能な限り速やかに実践し、頭の中でイメージするだけでなく、実際に書き出してまとめるように心掛けます。

「分析 × 難しい」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right