データ・アナリティクス入門

グループで広がる学びの輪

グループワークの価値は? グループワークで、普段の仕事の進め方や新たな学びの方法について話し合う機会があり、その経験を講座終了後も活かすことができたのは大変良いと感じました。 振り返りの意義は? ライブ講座では、これまでの学びを振り返ることができましたが、再度復習したいという思いも残りました。 どんな分析が役立つ? また、自分が普段担当していない手法であるファネル分析やA/Bテストについて学ぶことができ、新たな発見となりました。グループワークでは、原因の仮説を立てる際に3C分析を活用し、課題解決のフレームワークをいくつか身につけておくことで、仮説を立てやすくなると実感しました。 フレーム習得は難しい? 今後は、代表的な課題解決のフレームワークを3つ程度覚え、常に思考の一部として活用できるように努めたいと考えています。最初は難しいかもしれませんが、思考の確認として、予めAIに質問・確認するステップを取り入れることにしています。

データ・アナリティクス入門

説得力を生む加重平均の真実

分析視点は何が肝心? 今回の学習では、分析において比較する5つの視点(インパクト、ギャップ、トレンド、ばらつき、パターン)を意識することの重要性を再認識しました。また、平均値として単純平均、加重平均、幾何平均、中央値といった代表値の違いについて学び、特に加重平均と幾何平均が今後の業務で役立ちそうだと感じました。 平均選択のポイントは? これまで実務では単純平均を使用してきましたが、利益が低下している部分に焦点を当てるためには、加重平均を取り入れることで事業の取捨選択がより明確になると気づきました。加重平均を用いれば、経営陣に現状の課題を整理し、改善提案を行う際に説得力が増すと考えています。 幾何平均はどう見る? 一方、幾何平均は計算が複雑なため、現状では取り扱いが難しい印象を持ちました。しかし、来年以降の利益率成長率を算出する際に有用な指標となる可能性があり、将来的には利益予測の精度向上に寄与できるのではないかと期待しています。

戦略思考入門

迷いを突破!戦略フレームの魅力

思考の行き詰まりは? 3CやSWOT、バリューチェーン分析といったフレームワークを学ぶ中で、抜け漏れなく物事を考えるための軸は身についてきました。しかし、経験や知識が不足している部分では、思考が行き詰まることもしばしば感じます。自社や組織内の情報は何とかまとめられるものの、顧客や競合、市場など外部に関する情報収集は大きな課題となっています。 戦略はどう磨く? 組織の戦略、すなわち注力すべき領域を明確にするために、これらのフレームワークを活用したいと考えています。これまで3CやSWOTの手法に触れてきたものの、まだ十分に理解しきれていない実感があります。そのため、知見が足りない部分をどのようにカバーできるかを考えながら学習を進めていきたいと思います。 分析の壁は何? また、分析において何が難しいのか、そしてその課題をどのようなアイディアで解消できるのかという点について、具体的な議論を通じて考えを深めていきたいと考えています。

データ・アナリティクス入門

新たな視点で挑む問題解決術

仮説はどう活かす? 今回の学びで、仮説は結論を導くだけでなく、問題解決に役立つ視点としての「問題解決の仮説」が存在することに気づきました。また、仮説には時間軸があることや、複数の仮説を立て網羅性をチェックすることで、偏りのない視点を保つことが大切だと理解できました。 データはどう扱う? また、データ収集においては、新たなデータを集めることに注目する一方で、手元にある既存のデータや一般に公表されている情報を活用する分析が軽視されがちである点に気が付きました。新しいデータの収集は楽しい面もありますが、一方で入手が難しい場合もあるため、状況に応じた柔軟な対応が求められると感じました。 手法はどう広げる? 現在、業務効率化のためにデータ収集を通じて行動様式の検証に取り組んでいますが、今後はデータ収集に限定せず、インタビューやアンケートなど多様な手法を組み合わせることで、より効果的な業務改善を目指していきたいと考えています。

データ・アナリティクス入門

仮説検証で開く課題解決の扉

本質はどう捉える? 問題解決プロセスでは、「何が問題なのか(what)」「どこに原因があるのか(where)」「なぜその問題が発生しているのか(why)」の3点に対して、徹底的に検証することが重要であると学びました。 原因をどう探る? また、whyの部分については、3Cや4Pといったフレームワークを活用することで、より具体的な原因の特定と分析が可能になることが印象的でした。各アプローチにおいて、仮説を立て、既存または新規のデータを用いて検証する作業が鍵であると感じています。 新たな視点は? 特に、売上データの結果は複合的な要因が重なっており、一概に原因を絞るのは難しいという現実があります。それにも関わらず、自分なりにここが原因だろうという仮説を立て、検証を通して新たな視点や解決策につなげることの重要性を実感しました。今日学んだフレームワークを活用しながら、今後もさまざまな課題にチャレンジしていきたいと思います。

データ・アナリティクス入門

数字で紡ぐ学びのストーリー

数字に基づく検証は? 分析は、ただの偶然や直感に頼るのではなく、数字の根拠をしっかりと確認した上でストーリーを構築することが大切です。まずは、何が言いたいのか、どこを重点的に見るべきかを整理し、その順序(What⇒Where⇒Why⇒How)に沿って傾向を明確にしていきます。 どんな原因が考えられる? また、考えられる原因を幅広く洗い出し、特に可能性が高い仮説についてはしっかりと検証する必要があります。平均値を見る際には、その数値のばらつきにも注意を払い、全体像を把握するよう努めます。 データの可視化はどう? さらに、データを視覚的に表現することは非常に効果的です。ヒストグラム、円グラフ、棒グラフなど、データの種類に応じて最適な図表を瞬時に選び出し、形にするスキルが求められます。数字だけのデータでは、何が言いたいのか、どこに課題があるのかを直感的に伝えることが難しいため、ビジュアル化が大きな武器となります。

データ・アナリティクス入門

数字が織りなす学びの物語

なぜ分析が進化する? ライブ配信を通じて、分析プロセスへの理解が深まりました。これにより、単に分析するのではなく、常に目的を念頭に置きながら、What-Where-Why-Howの視点でストーリーを組み立てる意識が高まりました。 データはどう伝える? また、グラフ作成時には実数と割合の両面からデータをビジュアライズすることで、情報のインパクトを分かりやすく伝える工夫が重要だと感じています。企画提案においても、企画の根拠や効果を示す際、数値だけでなく視覚的な表現を取り入れることで、読み手にしっかりと訴求できると考えています。 必要情報はどう整理? さらに、必要な情報は徹底的に収集し、自分だけで対応が難しい場合は、関係者にデータ提供を依頼するなどの手順を踏みます。データ受領後は、代表値やばらつき、外れ値などを実数と割合でビジュアライズし、効果を視覚的に分かりやすく確認することが求められています。

データ・アナリティクス入門

分析の核心に迫る!比較活用の極意

比較の意義は? 分析の核心は、比較にあります。比較を行う際には、対象の選定や条件を統一することが、意義深い分析につながります。また、分析の出発点として、目的や仮説の定義が欠かせません。これらは、できるだけ明文化しておくことが理想的です。 データの見せ方は? さらに、分析結果を伝えるには、グラフやパーセンテージなどで適切にビジュアライズすることが重要です。例えば、自社サービスと競合他社サービスの比較では、自社に有利な形でデータを提示するのが一般的です。また、サービス導入前後の状態を比較し、業務時間の短縮やコスト削減といった導入効果を、定量的に示すことが求められます。 リスクをどう定量? ある程度の定量化を行った提案は既に実施していますが、定量化が難しいと感じられるセキュリティリスクやコンプライアンスリスクの削減についても、納得感のある定量的データとして提示する工夫をさらに進めたいと考えています。

アカウンティング入門

企業分析の面白さを発見!自社で試してみたくなるB/S学習

B/Sの理解を深めよう B/Sについて具体例を通じて考えることで、難しいと感じていた部分も理解が深まりました。特に、流動資産と固定資産の区分が1年内に動くかどうかで判断する考え方に難しさを感じましたので、実際のB/Sを見ながらさらに理解を深めたいと思います。 事業形態の読み解きに挑戦 次に、自社の分析を行い、どのような事業形態でどこに力を入れているのかを読み解くことに挑戦しました。各種資金の使用目的やその計画も念頭に置きつつ確認していきます。また、他社の公開情報にも目を通し、自社との違いを理解することも心掛けました。 不明点の解決策とは? 最後に、自社や他社のB/Sを確認し、学んだ枠組みに分類できるかをチェックしました。不明点については、まずは自分自身で理解を試み、その上で経理担当者や他の詳しい方に質問することで解決を図ります。また、P/Lとの関連も意識しながら、学習を進めています。

戦略思考入門

学びから戦略への第一歩

フレームワークは何? 3C、SWOT、バリューチェーンなどのフレームワークを学ぶ中で、外部・内部分析の基礎を理解することができました。具体例も交えられており、とても分かりやすかったです。今後は、さらに多くのフレームワークの知識も広げていきたいと考えています。 業務改善のヒントは? 一方、学んだフレームワークをすぐに自分の業務に適用してみたものの、分析の粒度が粗く、経営の成功に直結する具体的な施策を打ち出すのは難しいと感じました。専門家同士が集まり、内部・外部の分析を行うことで、より高度な施策の立案が可能になるのではないかと思います。 戦略再考はどう? 今後は、フレームワークの基礎を踏まえた上で、自社の経営戦略の資料を再度確認し、戦略検討のプロセスや考え方を自分なりに学び直していきたいと考えています。まとまった時間が確保できる長期休暇などを活用し、じっくりと身に付けていくつもりです。

戦略思考入門

戦略で未来を拓く: 意識転換の挑戦

戦略と戦術を意識? 戦略と戦術の違いを意識し、業務を行う際には目的を明確にして取り組みたいと思っています。視野を広げ、将来的なビジネスの展望も見据えられるようになりたいと考えています。今の立場では難しい部分もありますが、意識を変えるだけでも学びになると思っています。 戦略思考はどう? 現在、自身の業務に戦略的思考がどのように影響するのかは、まだ十分には理解できていません。戦略的思考とは具体的にどのようなもので、戦略的な人とはどのような人物なのかを明確にしないと、実践に必要な意識が根付かないと感じています。 業務の目的は? そのため、どんな小さな業務でも、会社の将来にどのような影響を与えるのかを考えていきます。自分自身で会社の現状を分析し、どのような戦略で経営計画を進めるべきかを考えていきたいと思います。そして、自分の業務についても一つ一つ目的を持って取り組んでいきます。

データ・アナリティクス入門

グラフが語る数字のドラマ

なぜ数値だけでは足りない? データの羅列だけで比較しても、各数値間のギャップを明確に示すことは難しいと感じました。そこで、統計的手法に沿い、平均値だけでなく最大値、最小値、中央値、最頻値など複数の数値を用いることで、データのばらつきをより具体的に把握できることに気付きました。また、こうした整えた数値データをグラフで視覚化することで、全体の傾向がより分かりやすくなると実感しました。 定性情報はどれほど重要? 実務上の変化を的確に捉えるためには、数値データと併せて定性情報のリサーチが不可欠です。これまでは、物量の精査や曜日ごとの波動を捉える際に平均値や中央値を多用していましたが、異常なオーダーも含めた数値をそのまま資料に取りまとめると、全体の概況が見えにくくなる可能性があります。今後は、日々の実績をもとに異常値を定義した上で、データの加工と分析に取り組んでいきたいと考えています。
AIコーチング導線バナー

「分析 × 難しい」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right