クリティカルシンキング入門

考える力を伸ばす!柔軟な思考習慣の大切さ

本当に問題は何? 事象に対して「何が問題か」を捉え続け、「本当にそれであっているかな」と問い続けることの重要性を感じました。私自身、考えることに疲れるとすぐに白黒つけたくなりがちなので、根気よく問い続ける習慣をつけたいと思います。特に、自分の傾向として、上司などの声の大きい人の意見に流されやすいため、「イシューは何か」を判断基準にしたいと考えています。 捉え方はどう? 「イシューからはじめよ」を以前に読んだことがありますが、十分に理解しきれず、目的に対する消化不良が残っていました。しかし、特にWeek5の内容では、非常に分かりやすく業務に活かしやすい形で解説されており、具体的に自身の業務に当てはめて考えられるようになったと感じます。問い続けているうちに、「そもそも問題の捉え方が違った」と気づくこともあるでしょう。最初に立てた「イシュー」に固執せず、柔軟に考える習慣もつけたいです。 どんな課題がある? チームや自身の目標を立てる際には、現状の課題を抽出する段階で役立ちます。たとえば、不適合業務が発生した場合の原因分析や改善方策を考える際、また優先順位をつける判断基準としても活用できます。具体的には、以下の点を意識しています: どう具体化する? まず、チームや自身の目標を立てる際には、現状に対し「何が課題か」と問う癖をつけることが重要です。日々の業務でその意識を持ち続けることが大切です。ある課題Aが見つかった場合、その根本原因を探りより具体的な課題の抽出を心掛けることが必要です。抽象的な課題は抽象的な目標を生みやすく、それでは評価が難しいため、具体性を持たせることが重要です. どう原因を探る? 次に、不適合業務の分析や改善方策を考える際はさまざまな角度から原因を分解して考えます。「○○を実施していたらミスは発生していたか?」と仮説を立てて検証したり、固定概念にとらわれず「対」や「組み合わせ」を意識し、複数の原因がある視点を持ちます。改善策も具体的で評価できるものを考えることを大事にしています. どれを優先すべき? 最後に、業務の優先順位をつける際には、難易度や影響力から今何をすべきかを判断することを心掛けています。このようなアプローチを通じて、より論理的で効果的な業務遂行を目指したいと考えています.

戦略思考入門

視座を高め、課題を多角的に捉える転機

戦略思考とは何か? 戦略思考とは、「物事の本質を見極め、目標を効果的に達成するためにシステマチックに考える」ことを指します。これには、大局観を持ち、情報をバランスよく収集・分析することが求められます。この広い視点での情報収集にはフレームワークが役立ちます。フレームワークを活用することで重要なポイントを包括的に捉え、広範囲で情報を整理することができます。また、異なるフレームワークを使うことで、さまざまな切り口から情報を収集でき、問題を網羅的に捉えるには、それぞれの整合性とバランスも重要です。 問題を話し合う際の注意点は? 問題について話し合う際の注意点としては、以下の三点が挙げられます。第一に、経営者視点で考えること。第二に、ジレンマを過度に恐れないこと。第三に、他者の意見にしっかり耳を傾けることです。 全社視点の重要性は? 全社的な視点で捉えた場合、自分の部署の仕事にはさまざまな意味合いがあります。これには、新規顧客の獲得、顧客の囲い込み、安全で安心なお買い物の提供、商品のプレゼンテーションの場の提供、そして低価格の実現といったものがあります。特に、コストの削減は常に重要な課題です。コスト、品質、納期の三つの要素の均衡を保ちながら業務を進める必要があります。 海外業務移行の課題は? 現在、私の部署では海外現地法人への業務移行に取り組んでおり、課題となっています。業務は専門性が高く、各国現地法人のみで完結するのは難しい状況です。売場で使用する陳列什器も種類が多く、日本の業者でも習熟には時間を要します。さらに、CAD操作や建築知識も必要であり、業務の難易度が高いです。 優先課題の明確化はどうする? まずは、高い視座でネックポイントを洗い出すことが重要と感じました。現在の課題が本当に効果的なのか、他に優先すべきことはないのか、多面的な視点で捉えることから始めるべきだと思います。一人で考えていると視野が狭くなるため、自部署のメンバーを巻き込み、取り組むべき課題を明確化していきたいです。 AIチャット活用の可能性は? 適切なフレームワークの選択がまだ難しいため、AIチャットを利用して課題に対する適切なフレームワークを提案してもらうのも良い方法ではないかと考えています。

データ・アナリティクス入門

目的設定から始まる分析の旅

分析前に何を考える? 分析を始める前に、目的や仮説を明確に設定することが基本です。その上で初めて実際の分析に着手できます。データの加工については、AIの活用が効果的ですが、なぜそれを行うのか、また結果がどうであるのかという点については、人の意見が重要だと感じています。これまでの業務では、見やすさやわかりやすさに時間をかけすぎ、本質的な問いに対する回答が十分でなかったと実感しています。 定量データの違いは? 定量データには様々な種類があり、平均値を算出することが有意義な場合とそうでない場合とがあります。直感的には理解できるものの、理由を問われると具体的な説明が難しいこともあります。質的なデータか量的なデータかという違いよりも、それぞれの特徴をしっかりと認識しておくことが大切です。 条件比較、何を見る? データの比較を行う際は、本当に同じ条件で比較できているかどうかを確認する癖を身につける必要があります。なぜ複数のデータを比較するのか、比較から何が読み取れるのかを常に考えることが求められます。例えば、既存店舗における業績、顧客属性、サービス満足度のデータを用いる場合、その店舗の改善ポイントや、他店舗で活用できる内容を明らかにすることが重要です。また、将来予測に際しては、既存店舗のデータ分析が正しく目的を果たし、正確な判断につながることが、1年先の店舗運営における仮説や予測の精度向上、そしてリスクヘッジに直結すると考えています。 会議で何を共有? 会議や立ち話などの中で分析に関する話題が上がった際も、まずは紙一枚に目的、期間、どのようなデータが必要か、既存のデータなのか、どの部分から入手可能かをまとめることが大切です。その上で、依頼者と意見をすり合わせながら進めることが効果的です。 定性データは役立つ? また、定性データの活用についても重要な視点です。仮説設定の根拠や課題確認のため、まずは定性データに目を通す機会を十分に設けることが求められます。 AI活用の注意点は? 現時点では、AIの活用は基本的に注意が必要ですが、関係のない自作データなどを用い、どのようなデータの見せ方が効果的かを試行するなど、活用の視点から取り組んでみると良いと感じています。

アカウンティング入門

数字の裏側を読み解く学び

本業と全体はどう? PLには売上総利益、営業利益、経常利益といった項目があり、営業利益は本業で得られる利益を示す一方で、企業全体の収益性の判断には限界があることが理解できました。経常利益を見ることで、初めて企業全体の儲けを把握できるという点も納得できました。 PLから何が分かる? また、PL単体では細かい財務活動まで把握することは難しいものの、利益の出し方やコストが発生する時点、そして過去と比較して各割合がどのように変動しているかなど、全体的な売上・利益構造を大まかに捉えるための有用な指標であると感じました。たとえば、対照的なコンセプトを採用するカフェのPLを通して、弱みを他の部分の費用で補うという戦略があることを学びました。店舗が小さく、立地条件が厳しい場合、集客力を補うために広告宣伝費を多く割り当てる戦略が取られているという点は興味深かったです。ただし、PLだけではその背景にある出店経緯や戦略は把握できないため、併せて確認する必要があると感じました。 報告書はどう読む? 自社の利益報告書を読む際は、月単位や年単位での推移を丁寧に把握し、売上や利益の構造に変化がないか、儲けが増加しているのか減少しているのか、要因を明確にすることが大切だと考えています。 各店舗を比べる? さらに、業界の特性から、売上原価の比重が高い店舗と低い店舗が存在するため、各店舗の利益の出し方の違いを比較し、より効果的な利益向上策を模索する意欲が湧きました。自社内の各店舗のPLを詳細に比較することで、利益構造やコンセプトの違いが明確になり、そこから自社分析を経たうえで競合他社のPLも確認し、販管費や労務費、売上原価の占める割合の違いから、何を強みとして成長させ、どこに改善の余地があるかを検討することが求められると感じました。 改善提案は何? こうした分析を通じて、売上に対する各費目の割合や変化を正確に把握し、改善活動を次期の部門方針に反映させるとともに、管理側と店舗それぞれが取り組むべき課題を明確にする必要があると実感しました。自身の責任範囲内で具体的な改善提案を上司に示し、統括する店舗が改善活動に向けた大きな予算を確保できるよう検討していきたいと考えています。

デザイン思考入門

問いかけが育む共感の力

顧客の悩みは何? 業務でサービス開発に取り組む中、ターゲットとなる顧客にインタビューを実施し、悩みや課題を洗い出しながら、そこから得られるインサイトや示唆を導き出しています。これまでは感覚的に共通項や心理を見出していたものの、以下の問いを設定して進めることで、思考が一層明確になると感じました。 ・顧客が感じている悩みは何か? ・その背景にある思考や本能は何か? ・この思考に至る組織的な制約条件(評価や文化など)は何か? ・最終的に、根本課題や真因は何か? AIはどう評価? AIコーチングからは、顧客インタビューを通じて課題やインサイトを探るアプローチに対して高い評価が寄せられています。明確な問いかけを用いることで思考が深まった点は大いに評価できる一方、さらに具体的な顧客事例や背景を考察することで、理解がより深まる可能性が示されています。 解決策は何? また、以下のような問いも提示されました。 ・インタビューで見つけた顧客の悩みの根本原因に対して、どのような解決策が考えられるか? ・提示された「課題定義」の5つのポイントはどのように活用されているか? このような追加の問いかけを通して、顧客理解をさらに深めるために、さまざまな視点でのアプローチを試みることが大切であると感じます. 今回、提示された4つの問いで思考を巡らせた結果、提供価値に直結する良い結論(真因)を導き出すことができました。ただし、試行は一度に留まっているため、今後はさらなる改善を図っていきたいと考えています。背景にある思考や本能、さらには組織的な制約条件を探ることが「共感」に繋がるのではないかと感じています。 分析方法は? また、定量分析と定性分析についても再認識する機会となりました。課題定義フェーズでは定性分析を重視し、定量は仮説の立証に活用するという考え方です。「根本課題・真因」を考える際には、背景にある思考や本能、そしてそれに影響を与えた組織的な制約条件(評価や文化など)を深く掘り下げることが、インサイトの導出に繋がると感じます。言うは易く行うは難しいですが、意識的に構造化して思考を働かせ、今後も実践していきたいと考えています。

戦略思考入門

視野を広げる3CとSWOTの活用法

顧客優先は正しい? 私は営業部門で勤務しているため、「顧客ニーズ」を優先することが多く、それが視野を狭くしてしまうことがあることに気づきました。事業計画を考える際には、以下の3つの視点を持つことが重要であると感じています。 全社視点は大事? まず、経営者の視座で考えることです。自分が発言する際には、常に全社的な視点を意識しながら行動することが求められます。次に、ジレンマを過度に恐れないことです。100%正しい判断は難しいので、ベストを求めすぎるよりもベターを選択する柔軟性を持つことが重要です。そして、他人の意見をしっかりと聴く姿勢も欠かせません。 フレーム活用でどう? これらの考え方に加えて、フレームワークを活用することで、施策を客観的に考えることができ、取りこぼしの少ない計画を立てることができました。それらのフレームワークは、3C分析で顧客、市場、自社、競合を整理し、PEST分析で外的環境を考慮する手法、SWOT分析で内部環境を整理し、クロスSWOTで重要課題を抽出し、バリューチェーンで企業活動を一覧化するものです。これにより、視野が広がり、現実的な意見を出すことができました。 業務量はどう管理? また、日常業務ではアフターフォローによる業務が多く、期待が高まる中で増える業務量への対応が課題となっています。この問題についてもバリューチェーンを作成することで、どの業務に重点を置くかが明確になり、社員全員が納得しやすくなると思います。また、やることだけでなく、やらないことを決める際にもバリューチェーンは有効だと考えます。 施策はどう練る? 具体的な施策としては、自社更新率を高めるために3C分析やクロスSWOTを用いて現状の課題を明確にし、解決策を検討しています。施策を考える際には、経営者の立場で全社的な視点を持つことを心がけ、自己部署内や他部署からも意見を聴き、多角的なアイデアを引き出すことが重要と感じています。現状の業務フローをバリューチェーンで可視化し、資源の浪費を防ぎ、コストを抑えるべきポイントを特定することも進めています。

戦略思考入門

顧客視点で磨く、新たな価値提案への道

学び直す顧客価値と持続可能性 今週の学習では、「顧客価値」と「持続可能性」の重要性について再認識しました。特に、私はこれまで希少性や付加価値に注目してアイデアを考えていましたが、「顧客にとって本当に価値があるのか」という視点が欠けていることに気づきました。さらに、顧客視点で競合を特定するのは非常に難しい課題だと感じました。従来の市場だけでなく、デジタルトランスフォーメーション(DX)の進展により、全く異なる分野からの代替品が競合となる可能性もあります。このような環境の変化を捉えるためには、広範な市場にアンテナを張り巡らせ、常に最新の動向を把握することが必要だと学びました。この気づきを活かし、今後は顧客視点を意識した仮説検証を重ね、具体的な価値提案を磨いていきたいと思います。 SI業界における持続可能性の課題は? SI業界における「持続可能性」の重要性も改めて考えさせられました。特に、技術の進歩により、かつては差別化の要因となっていた技術やサービスが他社にも容易に模倣される現状に直面しています。この課題に対処するには、最新の技術を追い続けると同時に、既存の強みを活かした独自の価値提案を作り出す必要があると感じました。また、VRIO分析は非常に有用であり、まずは自社について実施してみたところ、組織の観点が弱いという課題を認識しました。今後はチームメンバーとともにVRIO分析を実施し、他の視点を取り入れることで新たな強みや未認識の課題を発見したいと考えています。 新技術導入のための戦略は? 自社のサービス開発の場面では、新技術を導入する際、その技術がただの流行ではなく、顧客にとって長期的な価値を生み出す持続可能な競争優位性を持っているかどうか、導入前にプロセスを強化したいと思います。また、新技術分野やDX活用事例など、日々の情報収集の重要性を再認識し、セミナーへの定期的な参加や業界レポートの読み込みを今後も心がけていきたいです。競合他社との差別化ポイントを明確にする取り組みを進め、VRIO分析で得られた洞察をもとに自社の競争優位性を高めるための改善策を検討していきます。

データ・アナリティクス入門

学びを実践へ!クロス集計から脱却する方法

業務に手法を活かすには? これまでの学びを通じて、「これは使える」という手法を早速業務に活用してみました。しかし、総合演習では「どれを選択するのか」を考えたとき、これまでの学びがまだ身についていないことを実感しました。また、分析に際してクロス集計に依存している自分の癖にも気づきました。他の手法は示唆されれば思いつくものの、依然としてクロス集計に頼ってしまいます。せっかく学んだものを生かし切れていないと感じ、今後は意識していろいろな分析手法を活用する必要があると痛感しました。数をこなすことでしか選択肢の幅を広げることは難しいと学べたことも良かったと思います。 プロセス分解で何が変わる? 問題の原因を明らかにする際にはプロセスに分解することが重要であると気づきました。当たり前のことですが、自分ではそれができていないという発見がありました。また、経験に基づいた仮説を決め打ちしてしまう癖があることにも気づかされました。プロセスに分解する利便性と、その方法が他者への説得力につながるメリットを業務における実績分析でも生かしていきたいと考えています。具体的な手法として紹介されたA/B分析は既に使用していたものの、それをA/B分析と認識していなかったため、目的や仮説設定、検証の項目が曖昧でせっかくの検証結果を生かし切れていなかったと思います。 需要縮小期にどう対応する? 私の扱う製品は急激な需要縮小期を迎えています。そのため、よく「時代の流れ」として片づけられることが多く、そこで分析が止まってしまっていました。しかし、本当にそれだけが原因なのでしょうか。私は「なぜそうなったのか」をプロセスに分解し、正しく理解することが解決策を得るうえで重要な鍵であると考えるようになりました。幸い、過去の業界・当社の実績データはあるので、まずはそれを改めて分析しようと思います。「時代の流れ」以外の要因がないかを探し、その要因に対処することで売上に貢献できるのではないかと考えています。決め打ちせず、様々な選択肢を探ることで、今よりも良い施策を打てるかもしれないと希望を持っています。

データ・アナリティクス入門

ひも解く!受講生の生の声

仮説検証はどうすべき? 問題を特定した後、解決プロセスでは、網羅的な仮説を立てた上で条件をそろえ、比較検証を行う必要があります。同時に、データを収集しながら根拠を明確にする手法も有効です。 上司の指摘は何を示す? また、講義中に説明された内容ではありませんが、課題を進めていく中で思い出した上司の指摘が印象に残っています。上司は、データから状況を読み解く際、さまざまな項目を網羅することは大切ですが、事実と推測を明確に区別すべきだと述べていました。実際、読み取った情報が事実であれば仮説の妥当性を確認できますが、もし推測であれば話が大きく変わるため、この点には十分に注意が必要です。 根拠データはどう確保? 社員の要望をアンケート結果から読み解く場合は、ひとつひとつの事象に対して根拠となるデータを具体的に示すことが求められます。たとえば、「この部分からこういうことが読み取れる」といった説明が必要です。 低正答率の真因は? また、教育受講者に実施する理解度チェック問題で正答率が低かった場合には、単に「理解不足だから」と結論付けるのではなく、問題解決プロセスを分解して検討することが重要です。具体的には、社内教育における教材とチェック問題の内容の齟齬、チェック問題自体の意図が上手く伝わらなかった可能性、あるいは回答者側の問題(例:注意不足)など、課題が生じたプロセスを一つひとつ切り分けて検証する必要があります。 ヒヤリハットの要因は? さらに、6月からは昨年度まとめたヒヤリハットに関するデータの分析が開始されます。ここでは、会計処理中に「冷やっとした」や「ハッとした」といったミスにつながりかねない状況を取りまとめています。データ項目の数や回答レベルが一定でないため仮説を立てるのは難しいですが、ロジックツリーを活用して全体を網羅的に整理し、what(何が)、where(どこで)、why(なぜ)、how(どのように)という観点から現状を整理し、考えの根拠を丁寧に示しながら、最終的にはhowの提案に結びつけていく方針です。

データ・アナリティクス入門

学びの武器:ロジックツリーとMECE活用法

ロジックツリーとMECEの理解を深める 今回の学びで【ロジックツリー】と【MECE】についてしっかり理解することができました。これまで漠然と理解していたものの、具体的な分析には活用していなかったため、今後の分析に役立てたいと思います。ただし、【感度の良い切り口】を選ぶことが実践では難しいと感じており、特訓が必要だと考えています。今後は、これまでの成功と失敗の分析例を見比べ、感度の良い切り口を探っていきたいと思います。 分析力を向上させるための反省点 私は構造的に物事を分解して考えることが苦手で、【ロジックツリー】や【言語化】によって頭の中で考えていたことを正確に表現できていませんでした。その結果、要因分析の精度が不足していたと反省しています。この学びを経て、より効果的な分析ができるよう努める所存です。もともと時間がかかることもありますが、繰り返し実践し、自分のものにしていきたいです。 実践によるスキルの習得 早速、【ロジックツリー】や【MECE】を日々のデータ分析業務に取り入れ、課題解決に役立てたいと思います。これまでなんとなく分析しており、【what】【where】【why】【how】を頭の中で考えながらも【可視化】や【言語化】していないことが原因で、正確性に欠けていました。恐らく、【感度の良い切り口】が間違っていた可能性もあると反省しています。今後は学んだことを実践に取り入れ、分析の精度を高めていきます。 日々の実践がスキルアップの鍵? 日々の分析で【ロジックツリー】、【MECE】、【感度の良い切り口】を身に付けるためには、繰り返しの実践が大切です。そのために、同僚が利用している【ミニホワイトボード】を購入し、何度も書き出していくつかの切り口を見極めていこうと思います。確定したら、エクセルに【背景】【目的】【仮説】【ロジックツリー】【5W1H】をまとめ、事前に整理した資料をもとに適切なデータを見極めていきます。自分なりの考察をまとめた後は、依頼者と振り返り議論を通じて、より正確な要因分析が行えるよう努めます。

データ・アナリティクス入門

ロジックツリーで解決する新たな視点の探求

決定木と共通点は? ロジックツリーは問題解決に役立つと感じました。特に決定木と類似している点があることに気付きました。問題解決にはロジックツリーを利用し、業務フローを考えることは個人的に決定木のように解釈しています。「決定木」については、個別に確認を行ってみたいと考えています。 分解手法は何が違う? 層別分解については、粒度を揃えて階層毎に記載し、全体的な視点で考えることが重要だと感じました。変数分解では、細分化することで解決策を検討することが可能となります。 フロー分析は有効? 私は業務フロー分析を行い、RPA(自動化)のタスクを考えることがあります。問題解決プロセスを活用して、層別分解を業務フローに応用してみようとしています。 変数分解を深める? 変数分解は、利用頻度が低かったため、まだ理解が浅いと思います。すぐに実用できるアイデアは浮かびませんが、望む結果に至らなくても、試行錯誤を続けて活用できるよう努力したいです。 集計から何を探る? データ集計の結果を元に、ロジックツリーを用いて、漏れや重複をなくすだけでなく、別の観点での検証が可能かどうかを探りたいです。 KPI改善の鍵は? KPIのデータ集計結果において、乖離や数値の増減があった場合には、ロジックツリーを使って分析しています。MECEをベースに、問題解決に向けた改善活動に取り組んでいます。改善活動自体にもロジックツリーを適用してみることを考えています。 他チームの意見は? 他チームの分析結果にもロジックツリーを用いて、新しい視点が得られるかを検証したいです。他チームの報告を聞く際、通常は前提が正しいという説明を受けますが、その場で疑いを持っても、すぐに相違点を指摘するのは難しいです。 日常でどう活かす? 日常の業務において、データ分析以外にもロジックツリーを様々に適用し、考える習慣を試してみます。活用範囲を広げ、新たな気づきやスキルを獲得できればうれしいです。

戦略思考入門

新規事業への挑戦と差別化戦略の本質

顧客視点が差別化の鍵? 差別化戦略を考える上で、どの顧客に届けたいかを決めることが重要だとわかりました。顧客にとって価値が訴求できるか、固定観念に縛られず顧客視点で競合を意識することが、施策を考える上での重要なポイントです。また、模倣困難性の構築には歴史条件や因果関係の不明性、社会的な複雑性が絡んできて、単なる技術力だけでなく自社独自の顧客との関係性も含まれることが理解できました。どのようにそのネットワークをビジネスの中で活かしていけるか、今後考えていきたいです。 新規事業において別物を考え続ける理由は? 特に印象に残ったのは、動画の中の「ちょっとした差異ではなく、全く別物を考える」という言葉です。新規事業を考える上で、既存の仕組みの中にアイデアを無理やり入れ込もうとするのではなく、新しい仕組みを考え続けたいと思います。 ビジネスモデルの検討に重要な視点とは? 自身の業務は新規事業開発であり、自社の強みや独自性を入れ込みながらどのようなビジネスモデルが考えられるか検討する必要があります。まず、誰に対して価値を提供するのかを考え、3CでいうCompanyの分析をしっかり行うことが大切です。ただ、自社の独自性を活かしたモデルを意識して考えるのは非常に難しいと感じました。 フレームワークの実践で得られる効果は? また、差別化戦略では今後のビジネスプランの立案において、どのような施策を打ち出していくかが重要です。VRIO分析を用いて説明することで、より納得感のあるものができると感じました。 テクノロジーで可能にする新しいビジネスとは? 学んだフレームワークを身近な企業で実践し、チームメンバーに共有することも考えています。例えば、SWOT分析やバリューチェーン、VRIO分析を既存の事業で行ってみることです。現在の業務においては、自社の強みや独自性を考えるのは難しいので、「テクノロジーで可能になるビジネスは何か」という観点で間口を広げて考えてみたいと思います。

「分析 × 難しい」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right