戦略思考入門

勇気ある選択でビジネスを進化させる

捨てる選択はなぜ? 時間も人員も予算も限られていることを認識し、「捨てる」選択を勇気を持って決断することの重要性を学びました。また、捨てる選択をするためには、目指すゴール、顧客理解、現状をしっかりと整理・分析し、チーム全体で共通の理解を持つことが必要であることを再確認しました。実践演習では、顧客情報の一部だけを見ていた時と、追加情報(利益額や時間対利益)を可視化した後の判断が大きく異なることを体験しました。こうしたことは、日々のビジネスシーンでも多く発生すると思います。捨てる選択や現状とゴールの差を埋める道筋を描く際には、現状や顧客理解のために必要な要素をフレームワークを用いて整理し、重点的に考えるようにしたいです。 何を学んだの? 学んだことは以下の3つの場面で活用していきたいと思います。 マーケティングはどう変える? ①マーケティング施策、戦略検討 デジタルマーケティングやイベントマーケティングにおいて、行うべき施策や掛けるべき予算、工数、人員の見直しと整理が必要な場面です。年間を通して行うべき施策や予算、工数、人員などの決定に今回学んだことを活かしたいです。具体的には、ROIが高く、持続性があるものに優先的に予算・人員を割き、優先度とそのバランス、根拠が明確な戦略を作っていくことを心がけます。 ターゲットはどう絞る? ②インサイドセールスにおけるターゲティング インサイドセールスでアプローチすべきターゲットを絞り込む場面です。ターゲット母数が膨大ではないことから、現状は総当たり状態になっています。効果的に時間を使い、アプローチ先を効率的に選別するために、各セグメントごとに商談数や受注金額、アプローチリード数を整理し、どちらのアプローチ方法を優先すべきか判断したいです。 戦略共有はなぜ? ③チームやメンバーへの戦略共有 今まではターゲットや施策については共有していましたが、その判断に至るまでに捨てたアイデアやその根拠については共有していませんでした。これが戦略の不透明さや納得感の欠如につながると考えます。今後は、メンバーへ戦略や方針を伝える際に、どのような捨てる選択をしたのかも共有し、そこで生まれるディスカッションを大事にしたいです。

データ・アナリティクス入門

仮説とデータ収集の極意に迫る

複数仮説をどう活用する? 仮説を考える際には、「複数の仮説を立てること」や「仮説同士に網羅性を持たせること」が重要です。その上で、仮説を検証するために必然的にデータを収集することが求められます。ケースの解説では「3C」「4P」が挙げられており、私が考えたケースの回答も結果として「4P」の視点に近かったですが、意識的に「4P」から発想したわけではありませんでした。どの場面でどのフレームワークを使用するべきか、まだ身についていないと感じましたので、今後はフレームワークを有効に使えるようにしたいです。 データ収集のポイントは? データ収集の際にも、仮説を持った上で臨むことが重要だと再認識しました。例えば、故障対応の増加で残業が増えているという問題に対して、「昨年と今年の故障件数」の比較ではなく、「1件あたりの対応時間」を比較する方が良いという解説を受けて、その認識が強まりました。 日常業務での仮説と分析 仮説を考え、必要なデータを収集し、分析することは日常業務のあらゆる場面で必要です。具体的には、「毎月の財務諸表の比較分析」、「毎月の営業活動の振り返り」、「毎週のユーザー数の動向分析(新規獲得率、解約率、更新率)」などが挙げられます。 中長期的視点での活用法 また、中長期的な視点を持つ業務では、年間の目標設定やその達成に向けての方法を考える際、中期的なビジョンを考える際に、フレームワークの活用が有効です。特に中長期的な視点では、その活用をより一層進めていきたいと思います。 データ自動化とフレームワーク整理 日常業務で必要なデータ収集は現時点では自動化されていますが、収集されたデータに漏れがないか、今一度チェックすることが大切です。また、仮説を立てる際にはフレームワークの活用が有効と感じていますが、どの場面でどのフレームワークが有効かを一度整理したいと思います。そのために、フレームワーク集の書籍を手元に置いておく、もしくはChatGPTにどのフレームワークを使うかを尋ねるという方法も考えています。 独自視点はどう持つ? ただし、フレームワークに頼りきりになると内容が似たり寄ったりになりがちですので、常に独自の視点がないかを意識していきたいと思います。

データ・アナリティクス入門

問題解決を加速するストーリー設計

問題解決の本質は? ストーリー設計は、問題解決に向けた重要な要素です。分析に取り組む前に、解決したい問題を明確にし、結論のイメージを持つことが必要です。これにより、分析のプロセスが円滑に進められます。 仮説思考で何を見る? 分析のプロセスには、仮説思考のステップがあります。まず目的を設定し、仮説を立て(多少外れても問題ありません)、データを収集して検証します。また、5つの視点を持つことが重要です。インパクト(どれだけ影響を与えるか)、ギャップ(違いを見つける)、トレンド(時間の中での変化)、ばらつき(分布を見極める)、パターン(法則性の有無)を確認します。アプローチは、グラフや数値、数式を活用して進めます。 学びの次の一歩は? 今後の学習においては、考えを言葉にする「言語化」や本質を見抜く力、自分ごと化が重要です。また、「ありたい姿」に向けてのチェックポイントとして、具体性や意義、挑戦性、現実性を考慮し、モチベーションを維持する仕組みを構築する必要があります。 役割と判断の秘訣は? 私に求められている役割は、販売全体の動向を注視し、適切な配分調整で営業利益を達成することです。さらに、働きやすい環境作りや各自が能力を向上できる環境整備を推進します。そして、上司や部下、社外の方々と積極的にコミュニケーションを取り、一方的に考えを固執せず、全体最適な観点で判断を行います。大局的な会社の方針や戦略、動向を踏まえた部門運営を明確に提示し、決断します。 現状改善の策は? 会社のDX推進プログラムにエントリーし、具体的な課題解決に取り組んでいます。例えば、Web関連の各種KPIを全社の目標と関連づけ、可視化することが求められています。これは、WebのKPIが達成されても営業利益が未達成となる現状を改善するための施策です。また、プロモーションを投資対効果で判断する仕組みが必要とされています。さらに、データを活用できる人材の育成も重要課題です。専門的な分析を行う人材と、日々の判断を容易にするためにデータを活用する人材を育成する方針です。 今後の学びはどう? 以上の取り組みを通じて、今後も必要なスキルの向上や新しい学びを続けていきます。

データ・アナリティクス入門

検証と比較で広がる学び

分析の目的は何? 分析の本質は比較にあると実感しています。何のために分析を行うのか、もう一度立ち返り、プロセス、視点、アプローチを意識することが大切です。複数の仮説を立て、様々な切り口から問題にアプローチすることで、見落としがちな問題点も網羅することができると感じます。 データ分布はどうなって? 全体像を把握するには代表値の比較が有効ですが、同時にデータの分布がどのようになっているかもしっかりと確認する必要があります。抜け漏れがないか、条件反射に頼らずに注意深くチェックすることが肝心です。また、標準偏差の変動は、株のボラリティに似た感覚で捉えています。 検証の手順は? 仮説は何度も繰り返して検証すべきで、すぐに答えを出さず、切り口に抜け漏れがないかを再点検することが重要です。問題点を明確にするためにはデータを見える化することが効果的で、これによって次のアクションやステップを取りやすくなります。データの判断目的やその見せ方にも気を配る必要があると感じます。 打ち手の成果は? 特に、ある動画で打ち手の費用対効果について触れられていたことが印象的でした。これまで「どの打ち手を優先するか」が重要だとは考えていましたが、実際にその打ち手を実施した際のリターンまで考えるという視点は、私自身の経験上、一度も考えたことがありませんでした。ファイナンスの考え方であり、その入り口ともなる新たな発見に、深く感謝しています。 時間の使い方は? また、他の社員より明らかに時間を要している業務があると感じています。正直なところ、その業務が自分に向いていなかったり心理的に好ましくなかったために、時間がかかると言い訳をしていた自分がいました。しかし、他者との比較を通して、行動前の準備段階で何か問題があるのか、結論から逆算するなど、対策案の仮説やシミュレーションを実際に試している最中です。 改善策はどうする? 現状をしっかりと把握し、問題点を見つけるとともに、どのような状態にすべきかを工程を逆算しながら検証しています。苦手な業務の改善につなげるため、うまくいかなかった場合はさらなる仮説を立て、柔軟に対応していくつもりです。

戦略思考入門

競合分析で自社の強みを引き出す方法

差別化戦略はどうすべき? 差別化を進めるには、フレームワークを活用して自社と競合の状況を整理し、どこに共通点や相違点があるのかを明確にすることが重要です。これにより、感覚に頼らない判断が可能になります。また、思い込みだけで競合を定めるのではなく、他の競合となりうるセクターを意識的に洗い出すことも大切です。自社の強みを正確に理解し、効果的な差別化戦略を選択するためには、VRIOなどのフレームワークを活用し、実現可能で持続可能な方策を見つける必要があります。 競合状況は十分か? まず、自社と競合の状況を整理することが求められます。商社は幅広い事業に取り組む機会がありますが、ターゲットとする事業領域において、どのような競合が予想されるかをフレームワークを用いて分析します。次に、取り組んでいる事業の主要成功要因(KSF)を明確にし、対象とすべきターゲットのニーズを具体化します。ターゲットには異なるニーズがあるため、それに応じたアプローチが必要です。 自社の強みは何? ターゲットに焦点を当てた上で、自社の強みを体系的に分析することも重要です。VRIOを活用して自社の強みを整理する際、自社のリソース(ヒト・モノ・カネ・情報)の全体像を把握し、それぞれの価値や希少性、模倣困難性、組織的な活用度を正確に評価することが求められます。このプロセスには時間がかかることも認識しています。 現状分析はどうなっている? 事業領域が広がりすぎているため、個々の事業において自社、競合、顧客を正しく分析し、整理する時間が取れていない現状を見直す必要があります。選択肢を絞り込み、優先順位をつけるために差別化を考えることは有効です。整理をすることで、競争優位性がない事業に対しては取り組みの優先順位を下げる判断も必要となるかもしれません。 実行計画はどう考える? 具体的なステップとしては、まず事業領域ごとの自社、競合、顧客の情報を整理します。次に事業におけるKSFを明確にし、見るべきターゲットを特定します。続いて、事業領域に関連する自社の経営資源の全体像を整理し、VRIOを活用して自社の強みを発揮できる事業かどうかを判断します。

データ・アナリティクス入門

解決策を見つける真のプロセス学習

問題解決への焦りはなぜ? 何か問題が発生すると、「すぐにどうすればよいか?」と考えてしまうことは、私自身にも心当たりがあります。なぜそのような思考になるのかを考えると、問題を早く解決したいという焦りや、楽に解決したいという心理が影響しているのだと思います。しかし、こうしたアプローチは直感に頼りすぎるため、必ずしも良い結果を生むわけではなく、改めてこのことを認識しました。 まずは、問題を正確に定義することが重要です。そして、「その問題はどこで発生しているのか?」「なぜ起こっているのか?」「どのようにすれば解決できるのか?」というステップを踏むことで、直感的な解決策よりも、より高い確率で適切な解決に繋がることを理解しました。 過去の対策とその反省 過去に、不具合が頻繁に発生するシステムがあり、そのとき私は「すぐにどうすればよいか?」を考え、対策を講じていました。具体的には、エンジニアの責任感を高めるために定期的に1on1を実施し、細部まで仕様を決めて実装の指示を出す、さらに実装とテストを別の担当が行うようにしていました。しかし、それらの対策を実施しても、不具合が改善されることはありませんでした。根本的な原因を特定しないまま対策を講じていたことが理由だと考えます。 問題の本質を捉え、「その問題はどこで発生しているのか?」「なぜ起こっているのか?」「どのようにすれば解決できるのか?」をしっかり分析することが重要です。そうすれば適切な解決策が明らかになり、問題が減らせるかもしれません。 効果的な解決策を学ぶプロセス 今回、より高い確率で適切な解決策を見つける方法を学ぶことができました。学んだステップを実施する際に、漏れや重複があると効果的な対応ができなくなることも認識しました。しかし、「問題を早く解決したい」という焦る気持ちや、「できるだけ楽に解決したい」という心理が強く働くと、再び「すぐにどうすればよいか?」と考えがちになるかもしれません。 最初は、課題解決に時間がかかることもあるかもしれませんが、まずは今回学んだ方法を実践し、継続することで問題解決の精度とスピードを高めていきたいと思います。

戦略思考入門

戦略的思考で未来を切り開く

戦略的思考とは何か? 戦略的思考を意識するために、これまでに仕事を通じて戦略的だと感じた上司や同僚の姿を思い浮かべることにしました。彼らに共通しているのは、目指すべき姿を明確に言語化し、それをメンバーと共有している点です。さらに、目的達成に必要な行動を具体化し、関係者を巻き込みながら必要な影響を整理して交渉の材料としています。このような方々の姿勢を学び、具体的な形で自分の中に落とし込んで学習を進めたいと考えています。 経験をどう活かすか? 戦略的思考を学ぶ目的は、自分の仕事に活かすことです。そのために、自分の経験と結びつけることでより深い理解を目指しています。 今年度の組織課題は? 現在の組織に対しては、本質的な課題と目標を明確にした上で進むべき道を考えていきたいと考えます。今年度は一部の組織機能の統合を試みたものの、効果が十分かどうか、あるいは不足している部分を分析しきれていない状態です。また、自社の強みと業界内での差別化ポイントがまだ不明確であり、目指すポジションをしっかりと定める必要があります。次年度の方針を2026年4月を視野に入れながら決定し、1年間の施策を具体的に立案し進めていきたいです。 プロジェクトの見直しが必要? 社内で関わっているプロジェクトに関しては、現在の活動が場当たり的であると感じています。変化を促したい対象を絞り込み、ゴールから逆算して施策の内容やスケジュールを考える必要があります。 なぜゴール設定が重要か? 自分にとって特に意識すべきことは、「先を見据えゴールを明確にする」ことです。具体的には、次年度の方針を策定する際、2025年度末に達成したいゴールを設定し、それに向けた方針を検討します。そのためには、組織改革や業務整理が重要ですが、これには時間と労力がかかります。優先順位付けとスケジュールを重視し、やるべきこととやらないことを区別します。そして、アクションプランを立て、定期的に振り返りを行いながら進めることで、ブレや滞りがないか確認することが大切です。その過程で、戦略的思考で学んだことが反映できているかを自身で確認し、実践に繋げていきます。

データ・アナリティクス入門

現場の知恵で磨く課題設定術

課題設定はどう考える? 今週は、データ分析の一連の流れ(問題提起、仮説設定、検証方法の決定)の総復習を行いました。特に、どんな課題を設定すべきかという初期段階での苦労から、課題設定の難しさを実感しました。適切な課題設定がなされなければ、仮説や検証の方向性も定まらず、最終的な分析の質に大きく影響することを再認識しました。また、課題設定の精度を向上させるためには、現場の声をヒアリングする、過去のデータからヒントを得る、フレームワークを活用するなどの工夫が必要だと感じました。 実務復習は何が目的? 今回の復習を通して、実務でデータ分析の流れを実践し、ブラッシュアップしていく重要性も改めて感じました。特に、業務改善や営業データの分析においては、適切な課題の切り口が成果に直結します。例えば、営業成績が伸び悩む店舗に対して「なぜ成果が出ていないのか?」と問いかける際には、「訪問件数が少ないのか」、「折衝時間が短いのか」、「既存顧客へのアプローチが不足しているのか」といった具体的な観点から検討する必要があります。適切な課題が設定されなければ、的外れな仮説から誤った改善策を提案するリスクもあるため、今後は現場の意見をしっかりとヒアリングし、過去のデータを積極的に活用する習慣をつけたいと考えています。 仮説検証はどうなす? さらに、仮説を立てた後は、実践を通じてどのようなデータが有効なのかを検証することで、より精度の高い分析フローを確立することが求められます。これによって、業務改善や営業データの可視化に対して、より効果的なアプローチが可能になると実感しました。 現場実態はどう見る? 現場の実態を正確に把握するためには、まず営業担当者の意見を聞き、「営業活動でどのような課題を感じているか」を確認することが重要です。データだけでは見えにくい実際の状況を把握するため、過去の営業データ(営業成績の推移、訪問件数、成約率など)を分析し、他店舗との比較からどの指標に差があるのかを特定します。また、フレームワークを活用して「なぜ?」を繰り返し問いかけ、根本的な課題を探ることも効果的です。

データ・アナリティクス入門

ロジックで広がる学びの扉

MECEの意味は? MECE(ミーシー)とは、Mutually Exclusive and Collectively Exhaustiveの頭文字をとった言葉で、情報を漏れなく、ダブりなく整理する考え方です。この考え方は、多角的な問題分析や意思決定の際に、体系的に物事を捉えるための基盤となります。 ロジックの本質は? ロジックツリーは、複雑な問題や課題を階層ごとに分解し、問題の本質を明確にするためのフレームワークです。原因分析や解決策の立案、さらには意思決定プロセスにおいて、整理された視点を提供し、効率的なアプローチをサポートしてくれます。また、英語では「A Logic Tree」と表現され、複雑な事象を小さく分解することで全体像を把握しやすくしてくれる役割を果たしています。 SNS目的は何? 具体的にSNSプロモーションの計画においてこの手法がどのように活用されるかというと、まず中心となる目的、例えばエンゲージメントの向上やサイトへの誘導、フォロワーの増加などを明確に設定します。次に、その目的を達成するための主要戦略を大きく整理します。ここでは、コンテンツの質と種類、ターゲットとなるユーザー層、投稿のタイミングや方法などの要素が検討されます。 戦略の具体策は? さらに、各戦略を具体的なアクションプランに落とし込みます。たとえば、コンテンツ戦略では掲載する投稿の形式(画像、動画、テキスト)やテーマ、投稿頻度などが挙げられ、ターゲット戦略では、狙う世代やコミュニティとの交流方法を明確にします。そして、配信戦略についても、投稿の最適な時間帯や利用するプラットフォーム、必要に応じた広告の活用法などを細分化して整理します。 効果はどう評価? 最終的に、実行に移した各施策の成果を週ごとや月ごとに評価し、反応の良いコンテンツを強化しながら戦略の見直しやアップデートを行うことで、効果的なプロモーション計画が完成します。こうしたプロセスを通じて、ロジックツリーはSNSプロモーションの行動計画をより具体的かつ体系的に策定するための強力なツールとなります。

データ・アナリティクス入門

未来をひらく振り返りの一歩

なぜ複数仮説を作る? まず、目的を常に意識し、その目的に合わせた仮説を複数持つことが基本です。データは膨大な量があり、目的に沿った仮説がなければ、どのデータを選ぶべきかで躓く可能性があります。また、ひとつの事象にとらわれやすい傾向がある中で、複数の視点を持つことが他の可能性を閉ざさないためにも大切です。一つに決めつける心理を俯瞰して見直す努力が求められます。 どう仮説を具体化する? 次に、仮説の立て方は目的に応じたアプローチを取ることが必要です。時間軸、内容、結果からの推論を重視する場合もあれば、問題点の洗い出しから解決策を探る場合もあるでしょう。ビジネスの現場では、結論から入ってしまうと失敗や時間のロスにつながることが多いため、常に仮説思考を持ち、問題意識を大切にしてスピード感を保つことが重要です。 なぜ原因を掘り下げる? 過去の原因を十分に掘り下げ、問題解決につなげることで自社の行動を改善していくとともに、得意先と相互に利益が得られる関係、いわゆるWin-Win体制を作ることが肝要です。これらはすべて、ビジネスにおける成功へとつながる重要な視点です。 スペック提案の落とし穴は? 特に、自社製品・サービスの販売においては、製品のスペック提案に陥りがちです。スペックはあくまで製品の中身に関する情報であり、それが直接ユーザーのベネフィットに結びついているとは限りません。どのような利点があるのか、どんな状態で使用されるのか、また利用する相手はどのような人物なのかを常に予測し、仮説を立てながら動くことが大きな変化を生むと実感しています。 顧客視点でどう判断? まずは顧客起点で、自社製品がなぜ選ばれるのか、または選ばれないのか、その傾向を把握することから始めます。どこで、どのような時に製品が購入されるのかを理解した上で、より良い状況にするための複数の仮説を立てます。そして、その仮説に基づいて調査、分析、データ収集を行い、複数のプランを立案することで、会社としてどの方向に進むべきかの選択肢を明確にし、成功確率を高めることができると考えています。

クリティカルシンキング入門

問い続ける力でクリティカルシンキングを極める

どうして問いは大切? 上長が6月に交代して以来、「問いは?」と常に問われる機会が増えました。なぜ「問い」が重視されるのか当初は理解できなかったのですが、クリティカルシンキングがその背景にあることを講義を通じて理解しました。この講義を受けることで、クリティカルシンキングを身につけ、事業、ビジネス、私生活全般で活用していくために、特に「3つの姿勢」を意識することが重要であると認識しました。 どうして姿勢が大事? まず、一つ目は「目的は何かを常に意識する」ことです。次に、「自他に“思考のクセ”があることを前提に考える」こと。特にこの二点目は、慣れや習慣も影響していると考え、常に意識して取り組む必要があります。そして最後に「問い続ける」ことです。 なぜ経営で問う? 私は経営企画の仕事でクリティカルシンキングが必須のスキルであると感じています。業務の中で、事業環境や3C分析といったフレームワークを用いた調査・分析においても、クリティカルシンキングを用いることで、内容に深みを持たせることが可能です。また、経営層への提案や承認を得るための資料作成においても、短時間で理解と納得を得るためにロジカルシンキングやクリティカルシンキングを活用できると考えます。特に経営層は費用対効果や投資対効果に注目する傾向があるため、その効果を問い続けるストーリーを論理的に構築することで、納得を得られるのではないかと思います。 どんな問いが響く? 日常業務の提案書や稟議書の作成においても「3つの姿勢」を意識し、思考力を高めることが可能です。また、私生活でも「なぜこの商品が売れているのか?」「なぜこの店が人気なのか?」といった問いを持ち続けることが思考力を高めるきっかけになります。加えて、思考のクセが年齢とともに固定化していると自覚する部分もあるため、社員や知人、友人とコミュニケーションを取り、広くアイデアや情報を集めることを心がけたいと思います。そして、上長からの業務依頼に対しても、その背景や目的を常に問いかけ、業務を効率的に進める意識と姿勢を持ち続けたいと考えています。

データ・アナリティクス入門

データ分析で見つけた新しい視点と手法

なぜデータ分析の目的が重要? 今回の講座を通して、データ分析の方法について新たな視点を得ることができました。これまでは、やみくもにデータ分析に取り掛かりがちで、HOWにばかり目を向けていましたが、まずは目的や問題点を特定し、そのうえで分析を進める重要性を認識しました。また、複数の仮説を持ち、それを検証するプロセスも新たな学びとなりました。この講座を通じて、アウトプットの重要性も改めて実感しました。インプットしたことはすぐに忘れてしまうため、学んだことを自分の言葉にする時間を確保し、習慣化することが大切だと感じました。 データ分析のステップとは? 現業務においては、データ分析をプロセスに分けて取り組みたいと思います。具体的には、目的の設定、問題点の特定、原因の分析、解決策の検討というステップを踏むことで、自分の行うデータ分析の目的を明確にし、どのような視点で仮説を考えるべきかをシャープにしていきたいと考えています。 データ分析の型をどう身につける? また、データ分析の型を身につけたいと思います。特定の分析を行う際の型が身についていれば、データ分析の実行が容易になると感じました。例えば、特定の状況で使う分析手法をあらかじめ知っておくことで、効率的に進められるでしょう。 学びを習慣化する方法は? さらに、自身の成長のためにも学びやアウトプットを習慣化したいと考えています。講座を通じて行った振り返りやグループワークでの意見交換は、知識や思考を深める助けとなりました。これを続けて習慣にしたいと思います。 実践知識をどう高める? データ分析の実践知識についてもさらに勉強を進めたいです。他社事例などを参考にしながら、より鋭い経営分析や戦略検討ができる基盤を築けるよう努力します。 BS項目の分析はどう進む? 特に、まだ分析が進んでいないBS項目については、プロセスに則って分析し、課題解決に取り組む予定です。また、週に1度はアウトプットの日を意識的に作り、学んだことを整理し、反省点や来週の目標設定を行う時間を確保したいと思います。

「分析 × 時間」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right