データ・アナリティクス入門

代表値で読み解くデータのヒント

原因の絞り方は? 原因を探る際は、初めから抽象的で幅広い視点に陥らないよう注意が必要です。たとえば、複数の商品がある場合、どのカテゴリに低下傾向があるかという結論のイメージをあらかじめ明確にしておくことが重要です。 代表値の違いは? 次に、代表値の使い分けについて学びました。全体の傾向を把握するためには平均値が有効ですが、極端な値の影響を排除する場合は中央値が適しています。そして、一番多いパターンを知るためには最頻値を用いると良いでしょう。平均値だけでは見えない問題を把握するために、ばらつきや元データの傾向も確認することが求められます。 グラフはどう使う? また、グラフの使い分けが印象に残りました。数量の比較には棒グラフ、構成比を確認する際には円グラフが効果的です。データの可視化を行うことで、変化や傾向が一目で理解できるようになります。 率と実数の意味は? さらに、率と実数の両方を見る姿勢の大切さも学びました。率だけでは、実際の数が少なすぎる場合に意味が薄れる可能性があるため、実数と併せて確認する必要があります。逆に、率でも実数でも共に減少している場合は、本当に問題があると判断すべきです。特に回収数が一定でないアンケート調査では、基本的に割合での比較が推奨されます。 障害分析の見方は? 障害分析においては、障害対応時間(MTTR)の検証が具体例として有効です。極端な値に影響されない実態把握のためには平均値だけでなく、中央値の確認も欠かせません。さらに、最頻値を合わせて見ることで、改善すべき典型的なケースを特定することが可能です。 エラー分析はどう? エラー分析においては、エラー率と実数の両面から検討することが重要です。たとえば、ある機能でエラー率が高くても利用者数が少なければ意味が薄れますし、逆にエラー率が低くても多数の利用者に影響している場合は大きな問題と言えます。 具体的な行動は? 具体的な行動としては、障害レポートのテンプレートに「平均値」「中央値」「最頻値」の項目を追加し、代表値の使い分けを習慣化することが推奨されます。また、エラー率を報告する際には、必ず実数も併記するルールをチーム内で提案するよう心がけると良いでしょう。

クリティカルシンキング入門

MECE法で分かる問題解決の全貌と実践術

状況変化の把握方法とは? 状況の変化を把握するためには、「分ける」ことと「視覚化」がポイントとなります。「分ける」際には、複数の切り口を出し、機械的ではなく、目的に沿ってどのように分解すると状況が見えやすくなるかを考えることが重要です。この時に使える手法が「MECE(Mutually Exclusive, Collectively Exhaustive)法」であり、漏れなくダブりなく分けることを意識する必要があります。 MECE法の具体的な手法を学ぶ MECE法には次の3つの方法があります: 1. 層別分解:全体を定義して分ける(例:単価別、年代別) 2. 変数分解:一つの数字に対する変数を分ける(例:売上=客数×単価) 3. プロセス分解:分析対象の事象に関する全体のプロセスを考えて分ける(例:来店→注文→食事を運ぶ→食べる→会計→退店) 分解スキルの課題と対策 私はこれまでMECEの概念は知っていましたが、特に分け方がうまくできないと感じていました。上記の①〜③の手法を知ることができたのが一番の収穫でした。また、「他には?本当に?」と問いかけることで、分解の妥当性を検証することも重要だと感じました。 解約要因とその分析法は? 解約要因の分析: - 層別:子どもの年齢別、親の年齢別、世帯年収別、利用回数別、子どもの人数別 - 変数:アプリ利用状況=利用頻度×利用ゲーム数×1ゲームあたりの利用時間 - プロセス:契約→初期設定→初回利用→2回目利用→解約までの利用状況→解約→再契約 変数分解スキルを向上させるには? 変数分解のスキルアップ: 私は比較的容易に層別やプロセス分解の案は出せましたが、変数分解が特に苦手だと感じました。そのため、業務内外を問わず、日常生活で目にする数字を構成する変数が何かを1日に最低1つは考えていきたいと思います。具体例はすぐに思いつかなかったので、他の受講生の投稿や知人とのコミュニケーションを通じて課題を見つけていきたいと思います。 クリティカルシンキングを強化する クリティカルシンキングの基本姿勢: - 分解の切り口を検討する際に3つの視点を変えてみる。 - 出した結果に対して「なぜ」「本当に」「他には」という問いかけを行う。

戦略思考入門

勇気ある選択でビジネスを進化させる

捨てる選択はなぜ? 時間も人員も予算も限られていることを認識し、「捨てる」選択を勇気を持って決断することの重要性を学びました。また、捨てる選択をするためには、目指すゴール、顧客理解、現状をしっかりと整理・分析し、チーム全体で共通の理解を持つことが必要であることを再確認しました。実践演習では、顧客情報の一部だけを見ていた時と、追加情報(利益額や時間対利益)を可視化した後の判断が大きく異なることを体験しました。こうしたことは、日々のビジネスシーンでも多く発生すると思います。捨てる選択や現状とゴールの差を埋める道筋を描く際には、現状や顧客理解のために必要な要素をフレームワークを用いて整理し、重点的に考えるようにしたいです。 何を学んだの? 学んだことは以下の3つの場面で活用していきたいと思います。 マーケティングはどう変える? ①マーケティング施策、戦略検討 デジタルマーケティングやイベントマーケティングにおいて、行うべき施策や掛けるべき予算、工数、人員の見直しと整理が必要な場面です。年間を通して行うべき施策や予算、工数、人員などの決定に今回学んだことを活かしたいです。具体的には、ROIが高く、持続性があるものに優先的に予算・人員を割き、優先度とそのバランス、根拠が明確な戦略を作っていくことを心がけます。 ターゲットはどう絞る? ②インサイドセールスにおけるターゲティング インサイドセールスでアプローチすべきターゲットを絞り込む場面です。ターゲット母数が膨大ではないことから、現状は総当たり状態になっています。効果的に時間を使い、アプローチ先を効率的に選別するために、各セグメントごとに商談数や受注金額、アプローチリード数を整理し、どちらのアプローチ方法を優先すべきか判断したいです。 戦略共有はなぜ? ③チームやメンバーへの戦略共有 今まではターゲットや施策については共有していましたが、その判断に至るまでに捨てたアイデアやその根拠については共有していませんでした。これが戦略の不透明さや納得感の欠如につながると考えます。今後は、メンバーへ戦略や方針を伝える際に、どのような捨てる選択をしたのかも共有し、そこで生まれるディスカッションを大事にしたいです。

データ・アナリティクス入門

仮説とデータ収集の極意に迫る

複数仮説をどう活用する? 仮説を考える際には、「複数の仮説を立てること」や「仮説同士に網羅性を持たせること」が重要です。その上で、仮説を検証するために必然的にデータを収集することが求められます。ケースの解説では「3C」「4P」が挙げられており、私が考えたケースの回答も結果として「4P」の視点に近かったですが、意識的に「4P」から発想したわけではありませんでした。どの場面でどのフレームワークを使用するべきか、まだ身についていないと感じましたので、今後はフレームワークを有効に使えるようにしたいです。 データ収集のポイントは? データ収集の際にも、仮説を持った上で臨むことが重要だと再認識しました。例えば、故障対応の増加で残業が増えているという問題に対して、「昨年と今年の故障件数」の比較ではなく、「1件あたりの対応時間」を比較する方が良いという解説を受けて、その認識が強まりました。 日常業務での仮説と分析 仮説を考え、必要なデータを収集し、分析することは日常業務のあらゆる場面で必要です。具体的には、「毎月の財務諸表の比較分析」、「毎月の営業活動の振り返り」、「毎週のユーザー数の動向分析(新規獲得率、解約率、更新率)」などが挙げられます。 中長期的視点での活用法 また、中長期的な視点を持つ業務では、年間の目標設定やその達成に向けての方法を考える際、中期的なビジョンを考える際に、フレームワークの活用が有効です。特に中長期的な視点では、その活用をより一層進めていきたいと思います。 データ自動化とフレームワーク整理 日常業務で必要なデータ収集は現時点では自動化されていますが、収集されたデータに漏れがないか、今一度チェックすることが大切です。また、仮説を立てる際にはフレームワークの活用が有効と感じていますが、どの場面でどのフレームワークが有効かを一度整理したいと思います。そのために、フレームワーク集の書籍を手元に置いておく、もしくはChatGPTにどのフレームワークを使うかを尋ねるという方法も考えています。 独自視点はどう持つ? ただし、フレームワークに頼りきりになると内容が似たり寄ったりになりがちですので、常に独自の視点がないかを意識していきたいと思います。

データ・アナリティクス入門

目的設定から始まる分析の旅

分析前に何を考える? 分析を始める前に、目的や仮説を明確に設定することが基本です。その上で初めて実際の分析に着手できます。データの加工については、AIの活用が効果的ですが、なぜそれを行うのか、また結果がどうであるのかという点については、人の意見が重要だと感じています。これまでの業務では、見やすさやわかりやすさに時間をかけすぎ、本質的な問いに対する回答が十分でなかったと実感しています。 定量データの違いは? 定量データには様々な種類があり、平均値を算出することが有意義な場合とそうでない場合とがあります。直感的には理解できるものの、理由を問われると具体的な説明が難しいこともあります。質的なデータか量的なデータかという違いよりも、それぞれの特徴をしっかりと認識しておくことが大切です。 条件比較、何を見る? データの比較を行う際は、本当に同じ条件で比較できているかどうかを確認する癖を身につける必要があります。なぜ複数のデータを比較するのか、比較から何が読み取れるのかを常に考えることが求められます。例えば、既存店舗における業績、顧客属性、サービス満足度のデータを用いる場合、その店舗の改善ポイントや、他店舗で活用できる内容を明らかにすることが重要です。また、将来予測に際しては、既存店舗のデータ分析が正しく目的を果たし、正確な判断につながることが、1年先の店舗運営における仮説や予測の精度向上、そしてリスクヘッジに直結すると考えています。 会議で何を共有? 会議や立ち話などの中で分析に関する話題が上がった際も、まずは紙一枚に目的、期間、どのようなデータが必要か、既存のデータなのか、どの部分から入手可能かをまとめることが大切です。その上で、依頼者と意見をすり合わせながら進めることが効果的です。 定性データは役立つ? また、定性データの活用についても重要な視点です。仮説設定の根拠や課題確認のため、まずは定性データに目を通す機会を十分に設けることが求められます。 AI活用の注意点は? 現時点では、AIの活用は基本的に注意が必要ですが、関係のない自作データなどを用い、どのようなデータの見せ方が効果的かを試行するなど、活用の視点から取り組んでみると良いと感じています。

マーケティング入門

受講生の声に未来のヒント

自社魅力をどう分析? 既存のリソースを活用して新しいビジネス展開に取り組む力が求められます。その際、まずは顧客視点から自社の魅力を分析し、ライバル企業を狭い業種ではなく、広い服飾業界全体として捉えることが大切です。 製品方針は決まった? また、時代の変化に対応した製品開発と、要件定義を明確にした上での開発方針の策定が不可欠です。これにより、より実用的な解決策が生まれる環境が整います。 潜在ニーズを発見? さらに、顧客自身が気づいていないニーズを掘り下げる手法として、行動観察や個人インタビューを実施することが有効です。潜在的なニーズを把握することで、本当に必要とされるサービスや製品の開発が可能になります。 製品名はどう選ぶ? 製品名については、親しみやすく覚えやすい上、製品との整合性がありユニークな語感を持つ名前が望ましいと考えます。名称がユーザーに与える印象も、製品の魅力を左右する重要な要素です。 顧客課題は明確? ペインポイント、つまりお金をかけてでも解決したい課題を見つけ出すことも重要です。単に「あればいいな」というニーズではなく、実際に顧客が投資を惜しまない課題に焦点をあて、機械に限らず工場全体の課題として捉え、顧客への訪問インタビューを通じて具体的な問題点を明らかにする必要があります。 数値で説得できる? 実際、課題の中には費用をかけて解決したいものと、そうでないものが混在しています。例えば、工場向けの大型機械の場合、金銭や時間、人手という具体的な数値で示される課題は、比較的解決に向けた投資が行いやすいですが、中小企業の場合、得られる利益を正確に算出するのが難しいこともあります。そのため、例えば古い機械を更新する際に新製品の処理速度が2倍になるという具体例を用い、1時間あたりの利益や4年間での費用回収シミュレーションを示すなど、数値で分かりやすく説明する工夫が求められます。 担当部門を再考? 最後に、製品名の決定については、どの部門が担当するかも再考の余地があります。従来は機械開発担当が決めるケースが多いですが、ユーザーと近い部門が名称選定に関わることで、よりユーザーに響く名前が付けられるのではないかと感じています。

データ・アナリティクス入門

細かい分析が未来を創る

原因をどう捉える? 問題の原因は、全体のプロセスを細分化して考えることで把握しやすくなります。原因を明確にするためには、各工程ごとに何が起こっているかを順を追って分析することが有効です。 解決策は何だろう? 一方、解決策を検討する際は、ひとつの案に固執せず、複数の選択肢を用意して比較することが大切です。判断基準を設定しておくことで、より説得力のある解決策にブラッシュアップすることが可能になります。また、本質的な施策を比較検討する際には、A/Bテストが有効です。比較したい要素を明確にし、他の条件をできるだけ揃えることで、テスト結果を効果的に実施策へ反映させることができます。 数値分析はどう見る? 事前の動画では、WEBマーケティングの分析においてアクセス数(ページビュー、ユニークユーザー、流入数)、サイト内行動(ページの回遊数、平均滞在時間、直帰率、再訪問率)、広告効果(クリック率、CPA)、および効果測定(コンバージョン)といった数値の重要性が紹介されました。現代のマーケティング環境では、顧客の購買体験がSNSの影響で複雑化しているため、マーケティングミックス(4P)の視点も必要不可欠です。 仮説はどう組み立てる? また、仮説の立て方については、まず知識を広げることで情報を耕し、そこからラフな仮説を作成するという大きな2ステップが重要だとされています。さらに、5Aカスタマージャーニーのフレームワークを活用することで、サービスとの出会いからファンづくりまでの流れを効果的に生み出すことが可能になります。 テストの効果は? 商品の活用状況が悪い場合や解約が増加しているときの対策としては、ポップアップでの案内や電話窓口の資料の強化といったパターンに頼りがちです。しかし、日常的にアプローチ(訴求面)のテストを実施しておくことで、急な数値低下に直面した際にも、事前のテスト結果を活かして迅速かつ効果的な対応が可能になります。現在、A/Bテストを実施している場面もありますが、担当者の発案に頼るのみで、年間で数回程度に留まっています。今後は、各施策の企画段階からテストの仕込みを意識することで、より計画的な改善が期待できるでしょう。

クリティカルシンキング入門

もう一人の自分と問いの旅

思考の偏りを感じる? これまで、自分は思考には一定のパターンがあり、そのパターンに基づいて意思決定がなされると考えていました。しかし、意識的・無意識的な偏りが選択肢を狭め、本質的な課題にたどり着けないことがあると気づき、経験や直感のみの判断では不十分であると実感しました。客観的な視点を取り入れる重要性を改めて認識するようになりました。 成功体験に頼るの? 業務で課題を検討する際、過去の成功体験に頼り「今回も同じ方法でうまくいくだろう」と安易な結論に至ることがありました。しかし、目的に本当に沿っているか、根拠は何かについて問い直すことで、より本質的な解決策に近づけることを実感しています。 目的は明瞭か? 今後は、目的を明確に定めた上で問い続ける姿勢を維持し、ロジックツリーやMECEの考え方を活用して思考を整理していきたいと考えています。同時に、他者との対話や反復的な練習を通じ、視点・視座・視野の拡大を図り、柔軟で客観的な思考力を養うよう努めます。 再考の対話は有効? 特に「もう一人の自分を育てる」という考え方は印象的でした。日々の業務において「これは本当に正しいのか?」「他に可能性はないか?」と自問自答する習慣を身につけることで、自問自答力を向上させたいと考えています。さらに、カテゴリ分解やデータ分析においても、正確な分解や分析が課題解決にどのように結びついているのかを常に確認する姿勢を大切にしています。 分解で真意は掴める? 具体的には、焦点となる事象に対してカテゴリ分解を行い、必要に応じてデータ分析を取り入れて細分化するプロセスを重視しています。こうした中で「もう一人の自分」を意識し、客観的かつ多角的な視点から問いを立て、本質的な対話や文書作成へとつなげています。 持久力とは何か? このような取り組みを通じて、問題解決力の向上、チーム内での深い対話の促進、説得力のある文書作成、そして自己成長と視野の拡大の4つの力を高めていきたいと思います。なお、思考の持久力は「問いを止めない力」として捉えていますが、長時間考え続けることが苦手な場合、どのような工夫をされているのか、自らに問いかけながら実践していきたいと考えています。

データ・アナリティクス入門

問題解決を加速するストーリー設計

問題解決の本質は? ストーリー設計は、問題解決に向けた重要な要素です。分析に取り組む前に、解決したい問題を明確にし、結論のイメージを持つことが必要です。これにより、分析のプロセスが円滑に進められます。 仮説思考で何を見る? 分析のプロセスには、仮説思考のステップがあります。まず目的を設定し、仮説を立て(多少外れても問題ありません)、データを収集して検証します。また、5つの視点を持つことが重要です。インパクト(どれだけ影響を与えるか)、ギャップ(違いを見つける)、トレンド(時間の中での変化)、ばらつき(分布を見極める)、パターン(法則性の有無)を確認します。アプローチは、グラフや数値、数式を活用して進めます。 学びの次の一歩は? 今後の学習においては、考えを言葉にする「言語化」や本質を見抜く力、自分ごと化が重要です。また、「ありたい姿」に向けてのチェックポイントとして、具体性や意義、挑戦性、現実性を考慮し、モチベーションを維持する仕組みを構築する必要があります。 役割と判断の秘訣は? 私に求められている役割は、販売全体の動向を注視し、適切な配分調整で営業利益を達成することです。さらに、働きやすい環境作りや各自が能力を向上できる環境整備を推進します。そして、上司や部下、社外の方々と積極的にコミュニケーションを取り、一方的に考えを固執せず、全体最適な観点で判断を行います。大局的な会社の方針や戦略、動向を踏まえた部門運営を明確に提示し、決断します。 現状改善の策は? 会社のDX推進プログラムにエントリーし、具体的な課題解決に取り組んでいます。例えば、Web関連の各種KPIを全社の目標と関連づけ、可視化することが求められています。これは、WebのKPIが達成されても営業利益が未達成となる現状を改善するための施策です。また、プロモーションを投資対効果で判断する仕組みが必要とされています。さらに、データを活用できる人材の育成も重要課題です。専門的な分析を行う人材と、日々の判断を容易にするためにデータを活用する人材を育成する方針です。 今後の学びはどう? 以上の取り組みを通じて、今後も必要なスキルの向上や新しい学びを続けていきます。

データ・アナリティクス入門

検証と比較で広がる学び

分析の目的は何? 分析の本質は比較にあると実感しています。何のために分析を行うのか、もう一度立ち返り、プロセス、視点、アプローチを意識することが大切です。複数の仮説を立て、様々な切り口から問題にアプローチすることで、見落としがちな問題点も網羅することができると感じます。 データ分布はどうなって? 全体像を把握するには代表値の比較が有効ですが、同時にデータの分布がどのようになっているかもしっかりと確認する必要があります。抜け漏れがないか、条件反射に頼らずに注意深くチェックすることが肝心です。また、標準偏差の変動は、株のボラリティに似た感覚で捉えています。 検証の手順は? 仮説は何度も繰り返して検証すべきで、すぐに答えを出さず、切り口に抜け漏れがないかを再点検することが重要です。問題点を明確にするためにはデータを見える化することが効果的で、これによって次のアクションやステップを取りやすくなります。データの判断目的やその見せ方にも気を配る必要があると感じます。 打ち手の成果は? 特に、ある動画で打ち手の費用対効果について触れられていたことが印象的でした。これまで「どの打ち手を優先するか」が重要だとは考えていましたが、実際にその打ち手を実施した際のリターンまで考えるという視点は、私自身の経験上、一度も考えたことがありませんでした。ファイナンスの考え方であり、その入り口ともなる新たな発見に、深く感謝しています。 時間の使い方は? また、他の社員より明らかに時間を要している業務があると感じています。正直なところ、その業務が自分に向いていなかったり心理的に好ましくなかったために、時間がかかると言い訳をしていた自分がいました。しかし、他者との比較を通して、行動前の準備段階で何か問題があるのか、結論から逆算するなど、対策案の仮説やシミュレーションを実際に試している最中です。 改善策はどうする? 現状をしっかりと把握し、問題点を見つけるとともに、どのような状態にすべきかを工程を逆算しながら検証しています。苦手な業務の改善につなげるため、うまくいかなかった場合はさらなる仮説を立て、柔軟に対応していくつもりです。

戦略思考入門

競合分析で自社の強みを引き出す方法

差別化戦略はどうすべき? 差別化を進めるには、フレームワークを活用して自社と競合の状況を整理し、どこに共通点や相違点があるのかを明確にすることが重要です。これにより、感覚に頼らない判断が可能になります。また、思い込みだけで競合を定めるのではなく、他の競合となりうるセクターを意識的に洗い出すことも大切です。自社の強みを正確に理解し、効果的な差別化戦略を選択するためには、VRIOなどのフレームワークを活用し、実現可能で持続可能な方策を見つける必要があります。 競合状況は十分か? まず、自社と競合の状況を整理することが求められます。商社は幅広い事業に取り組む機会がありますが、ターゲットとする事業領域において、どのような競合が予想されるかをフレームワークを用いて分析します。次に、取り組んでいる事業の主要成功要因(KSF)を明確にし、対象とすべきターゲットのニーズを具体化します。ターゲットには異なるニーズがあるため、それに応じたアプローチが必要です。 自社の強みは何? ターゲットに焦点を当てた上で、自社の強みを体系的に分析することも重要です。VRIOを活用して自社の強みを整理する際、自社のリソース(ヒト・モノ・カネ・情報)の全体像を把握し、それぞれの価値や希少性、模倣困難性、組織的な活用度を正確に評価することが求められます。このプロセスには時間がかかることも認識しています。 現状分析はどうなっている? 事業領域が広がりすぎているため、個々の事業において自社、競合、顧客を正しく分析し、整理する時間が取れていない現状を見直す必要があります。選択肢を絞り込み、優先順位をつけるために差別化を考えることは有効です。整理をすることで、競争優位性がない事業に対しては取り組みの優先順位を下げる判断も必要となるかもしれません。 実行計画はどう考える? 具体的なステップとしては、まず事業領域ごとの自社、競合、顧客の情報を整理します。次に事業におけるKSFを明確にし、見るべきターゲットを特定します。続いて、事業領域に関連する自社の経営資源の全体像を整理し、VRIOを活用して自社の強みを発揮できる事業かどうかを判断します。

データ・アナリティクス入門

理想と現実を繋ぐ数値の声

あるべき姿って何? 今までは「あるべき姿」を、漠然と「ありたい姿」と「正しい状態」の二つの意味で使い分けずに運用していたことに気づきました。しかし、その区別を認識したことが今後の分析にどのような影響を与えるのか、正直なところ分かりません。今後その機会が訪れるのか疑問に感じています。 また、あるべき姿として何を設定するかを考えた時、以前はただ漠然と「こうなればいいな」と思う程度で、例えば急降下するグラフの曲線が鈍化すればよいという認識に留まっていました。今後は、より定量的に表現できる方法を検討していきたいと考えています。 早帰りは何故? 人の管理において、業務終了時間が18時であるところ、早帰りが認められている場合、退社が17時になると、早帰りする人は17時前に業務終了の準備に取り掛かり、17時ちょうどに退出するケースも出てきます。そのため、17時前のお客様からの問い合わせに十分に対応できず、お待たせしてしまう場面があるのです。 解決へ向かう道は? この課題を関係者間で合意のもと解決するためには、現状として17時前に何人が業務を離れているのか、またその時間帯にどの程度の問い合わせが発生しているのか、そしてその問い合わせにどの程度対応できれば問題ないのかといった、正しい状態を定量的に示す必要があります。これを踏まえ、現状を関係者間で共有し、合意形成を行った上で、解決手段を検討していきたいと思います。 まずは現状分析として、以下の点を把握する必要があります。 ① 17時前の人数 ② 17時後の人数 ③ ①と②の差から算出される早帰り人数(すなわち、17時前における作業可能人数の減少) これらのデータや、該当する時間帯の問い合わせ件数を数週間にわたり収集し、現状を明確にします。その上で、現状と理想の正しい状態が何かを議論し、あるべき姿を決定します。そして初めて、どのように問題を解決するか(how)の議論に入ることができると考えています。 これまでは、関係者間で現状のすり合わせを十分に行わずに解決策(how)のみを議論していた点を反省し、今後は一歩ずつ着実にステップを踏んで進めていきたいと思います。
AIコーチング導線バナー

「分析 × 時間」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right