データ・アナリティクス入門

データ分析で見つけた新しい視点と手法

なぜデータ分析の目的が重要? 今回の講座を通して、データ分析の方法について新たな視点を得ることができました。これまでは、やみくもにデータ分析に取り掛かりがちで、HOWにばかり目を向けていましたが、まずは目的や問題点を特定し、そのうえで分析を進める重要性を認識しました。また、複数の仮説を持ち、それを検証するプロセスも新たな学びとなりました。この講座を通じて、アウトプットの重要性も改めて実感しました。インプットしたことはすぐに忘れてしまうため、学んだことを自分の言葉にする時間を確保し、習慣化することが大切だと感じました。 データ分析のステップとは? 現業務においては、データ分析をプロセスに分けて取り組みたいと思います。具体的には、目的の設定、問題点の特定、原因の分析、解決策の検討というステップを踏むことで、自分の行うデータ分析の目的を明確にし、どのような視点で仮説を考えるべきかをシャープにしていきたいと考えています。 データ分析の型をどう身につける? また、データ分析の型を身につけたいと思います。特定の分析を行う際の型が身についていれば、データ分析の実行が容易になると感じました。例えば、特定の状況で使う分析手法をあらかじめ知っておくことで、効率的に進められるでしょう。 学びを習慣化する方法は? さらに、自身の成長のためにも学びやアウトプットを習慣化したいと考えています。講座を通じて行った振り返りやグループワークでの意見交換は、知識や思考を深める助けとなりました。これを続けて習慣にしたいと思います。 実践知識をどう高める? データ分析の実践知識についてもさらに勉強を進めたいです。他社事例などを参考にしながら、より鋭い経営分析や戦略検討ができる基盤を築けるよう努力します。 BS項目の分析はどう進む? 特に、まだ分析が進んでいないBS項目については、プロセスに則って分析し、課題解決に取り組む予定です。また、週に1度はアウトプットの日を意識的に作り、学んだことを整理し、反省点や来週の目標設定を行う時間を確保したいと思います。

データ・アナリティクス入門

学びの武器:ロジックツリーとMECE活用法

ロジックツリーとMECEの理解を深める 今回の学びで【ロジックツリー】と【MECE】についてしっかり理解することができました。これまで漠然と理解していたものの、具体的な分析には活用していなかったため、今後の分析に役立てたいと思います。ただし、【感度の良い切り口】を選ぶことが実践では難しいと感じており、特訓が必要だと考えています。今後は、これまでの成功と失敗の分析例を見比べ、感度の良い切り口を探っていきたいと思います。 分析力を向上させるための反省点 私は構造的に物事を分解して考えることが苦手で、【ロジックツリー】や【言語化】によって頭の中で考えていたことを正確に表現できていませんでした。その結果、要因分析の精度が不足していたと反省しています。この学びを経て、より効果的な分析ができるよう努める所存です。もともと時間がかかることもありますが、繰り返し実践し、自分のものにしていきたいです。 実践によるスキルの習得 早速、【ロジックツリー】や【MECE】を日々のデータ分析業務に取り入れ、課題解決に役立てたいと思います。これまでなんとなく分析しており、【what】【where】【why】【how】を頭の中で考えながらも【可視化】や【言語化】していないことが原因で、正確性に欠けていました。恐らく、【感度の良い切り口】が間違っていた可能性もあると反省しています。今後は学んだことを実践に取り入れ、分析の精度を高めていきます。 日々の実践がスキルアップの鍵? 日々の分析で【ロジックツリー】、【MECE】、【感度の良い切り口】を身に付けるためには、繰り返しの実践が大切です。そのために、同僚が利用している【ミニホワイトボード】を購入し、何度も書き出していくつかの切り口を見極めていこうと思います。確定したら、エクセルに【背景】【目的】【仮説】【ロジックツリー】【5W1H】をまとめ、事前に整理した資料をもとに適切なデータを見極めていきます。自分なりの考察をまとめた後は、依頼者と振り返り議論を通じて、より正確な要因分析が行えるよう努めます。

データ・アナリティクス入門

数字とグラフで見える成長

比較や仮説の意義に迫る? 本教材では、比較や仮説思考の重要性を改めて確認しました。大量のデータを扱う際、数字化しグラフなどで可視化することで、情報がより明確に把握できることが示されています。 代表値はどう選ぶ? 代表値として、単純平均、荷重平均、幾何平均、そして中央値が挙げられました。それぞれ、状況に応じた使い分けが必要です。たとえば、ばらつきが大きい場合や外れ値がある場合には中央値が適している一方、成長率などの変化割合を捉えるためには幾何平均が有効です。 標準偏差を理解する? また、データのばらつきを理解するためには、標準偏差が重要な指標となります。標準偏差は、平均値との差の二乗和の平均の平方根として計算され、数値が小さいと密集、大きいとばらつきがあることがわかります。正規分布の場合、平均値から標準偏差の2倍以内に約95%のデータが収まるという2SDルールも、実感としての起こりにくさの目安となります。 グラフの効果は何? まとめとして、代表値とばらつきを用いてデータの特性を把握し、グラフなどの可視化を利用すると、非常にわかりやすく情報を整理できることが強調されていました。具体例を用いた説明は非常に効果的で、内容が実践的に応用できる点も評価されます。 荷重平均の活用は? さらに、データ可視化の具体的な利点や、実際の場面で荷重平均をどのように活用するかについて、さらに考えを深める問いが提示されています。これにより、自らの分析手法を実践的に応用する視点が求められています。 実務でどう活かす? 最後に、実務への応用例として、メンバーの時間外労働の管理が取り上げられました。労働時間が所定の範囲内に収まるよう、グラフを用いて傾向を把握する方法や、外れ値がある場合に特定の商品のデータを除外して全体の傾向を見る手法が紹介されました。また、エクセルを活用して各メンバーの代表値やばらつきを算出し、分析の特性に応じた手法が使われているかを確認することで、より実践的なデータ分析支援に繋げる取り組みが示唆されています。

戦略思考入門

顧客を惹きつける差別化の探求

差別化のカギは? 今回の演習を通じて、「差別化」について三つの気づきを得ました。 顧客像ははっきり? まず一つ目は、ターゲット顧客を明確にする重要性です。顧客像を細かくイメージし、それに基づいて価値を提供しなければ、他社のやっていないことを考え出すことができたとしても、顧客に受け入れられるかどうかはわからず、無意味な施策に終わりかねません。 施策の継続は? 次に二つ目は、施策を考える際には顧客に提供する価値だけでなく、その施策が実現可能で継続可能かどうかを重視することです。どれほど優れた施策でも、時間やコストがかかりすぎるか、他社に簡単に模倣されるようであれば効果が持続しないため、取り組むべきではないと感じました。 考える順序は? 最後に三つ目は、物事を順序立てて考えることの重要性です。施策を考えることから始めるのではなく、まずは状況把握を行い、その後に顧客ターゲットの選定、最後に施策の検討へと進むべきだと気づきました。 現状の確認は? これらの気づきを踏まえ、今後は「現在の自分たちの状況は何か」という問いから始め、「ターゲットとなる顧客は誰なのか」「その顧客にどのような価値を提供するか」と考え、具体的なターゲットを定めて、そのために考えられる戦略を多角的に検討していきます。 営業戦略はどう? 今回の学びは、社内の営業戦略への理解を深めるためにも有用だと実感しました。現在、社内のコスト部門に所属しており、営業戦略については会社が用意する資料を読む程度ですが、これを機に自社がどのような差別化戦略を採用しているのか改めて分析し、自分の理解を深めることで、現場での取り組みが会社の営業戦略に合っているか確認していくつもりです。 中期戦略は探る? また、自社の中期経営戦略を見直し、どのような差別化戦略に取り組んでいるかを探ります。具体的には、VRIO分析を行い、自社の強みを感覚と一致するか確認します。その後、自部署が何を提供できるかを考えていきたいと思います。

データ・アナリティクス入門

挑む学び!仮説が広がる瞬間

課題と仮説の意義は? 今週は、課題設定と仮説構築の重要性について学び、サンプルデータを用いた実践を行いました。課題を具体的に明確化することで、その後の仮説の精度が向上することを実感しました。また、立てた仮説に固執せず、検証結果に応じて柔軟に視点を変えることの大切さにも気づかされました。仮説が立証されなかった場合には、別の原因を積極的に探る姿勢が求められます。 なぜ業務は偏る? 営業店の業務負荷にばらつきがある場合、単に「業務量が多い」という理由で負担が大きいと判断するのではなく、どの業務が集中しているのか、フローに非効率な点があるのか、人員配置に偏りがあるのかといった具体的な仮説を立てた上で、必要なデータを特定し検証することが重要です。仮説を基に、どのデータを取得し、どのようなグラフで可視化するかを事前に整理することで、分析の精度が高まります。たとえば、営業担当者ごとの業務時間の偏りを分析する際、移動時間の長さや業務の種類が要因となっているかを検証するために、ヒストグラムや散布図の活用が考えられます。 定量指標は何故大切? 課題設定の精度向上には、定量的な指標を明確にすることが不可欠です。業務負荷の偏りを評価する場合は、「1人あたりの業務処理件数」や「1件あたりの処理時間」を指標とし、営業成績の低迷については「訪問件数」や「折衝時間」、「成約率」を基に状況を把握します。現場の意見をヒアリングし、課題感を共有した上で、分析すべきデータを整理することで、的外れな分析を防ぐことができます。 現場の意見は鍵? また、仮説構築とデータ収集の精度を高めるためには、複数の仮説を立て、どの仮説が有力かを検証する手法が有効です。たとえば、「営業成績の低迷要因」として、訪問件数の不足、折衝時間の短さによる十分な説明ができていない、または高額商品の偏った営業活動といった仮説が考えられます。とりわけ、営業活動に関する領域知識が不足している状況では、現場からの意見を積極的に取り入れた仮説設定が必要だと感じました。

クリティカルシンキング入門

小さな分解で見える大発見

分解で見える真実は? 分解を行うことで、従来の全体からは見えなかった事実を得ることができると実感しました。例えば、年齢などの区分を均等に分けるのではなく、生データの特徴に合わせた切り口で分解することが重要であると知り、自分自身も改善すべき点だと思いました。実際、いくつかの切り方を試して分析を重ねることで、より適切な理解が深まると感じています。 切り口は何が違う? また、従来は層別分解が得意でしたが、変数分解やプロセスごとの分解など、異なる切り口も学ぶことができました。分解を始める前に全体像を明確に定義すること、すなわち目的を明確にするというクリティカルシンキングの基本が、データ分析においても非常に重要であることを再認識しました。 ウェブの解析はどう? 私の業務では、ウェブシステムのパフォーマンス分析や運用業務の効率化に取り組んでいます。パフォーマンス分析では、レスポンスタイムやエラー率など、様々な指標を機能別、リクエスト別、時間帯別に分解して検証することで、新たな知見を得る可能性が広がっていると感じています。 業務効率の見直しは? また、運用業務の効率化においても、単に忙しさを感じるのではなく、実際に業務に費やす時間を計測し、プロセスや対応内容ごとに分解することで、根本的な原因や改善ポイントが見えてくると実感しています。 ラベリングはどう大切? さらに、データを正確に分解して活用するためには、収集や計測の段階で最小単位までしっかりとラベリングすることが不可欠だと感じました。全体の傾向は平均や合計から把握できるものの、細分化したデータを分析するには、各サンプルがどのグループに属するのかが明確でなければなりません。 知見の信頼はどう生む? そのため、今後も日常的にデータを分解して分析することを念頭に置き、様々な切り口から知見を得られるよう努めたいと思います。いかなる知見が得られても、それが確かなものであるか否かを常に疑い、裏付けを求める姿勢を維持していきたいと考えています。

データ・アナリティクス入門

仮説思考が拓く学びの扉

仮説思考は何のため? 仮説思考は、効率的な分析を行うために欠かせない手法です。基本的なステップは、目的(問い)の把握、問いに対する仮説の設定、データの収集、そしてそのデータをもとに仮説を検証する、という四段階で構成されます。 どのデータを集める? データ収集の方法は大きく二つに分かれます。まず、既存のデータを集める方法として、検索エンジンや各種リサーチサイトを活用します。次に、まだ存在していないデータについては、実際に観察したり、有識者へのヒアリングやアンケートといった方法で収集を行います。 五視点はどう活かす? また、仮説思考を実施する際には、以下の五つの視点が重要です。インパクトではその影響力の大きさを、ギャップでは何がどのように異なるのかを捉えます。トレンドでは時間的な変化や変曲点、外れ値に注目し、ばらつきではデータの分布が偏っていないかを確認します。最後に、パターンの視点からは、法則性があるかどうかを見極めます。 グラフ化の手順は? グラフ化を行う場合には、次の三つのステップが有効です。まず、仮説や伝えたいメッセージを明確にし、次に比較対象を設定、そして適切なグラフを選んで情報を整理します。 経験が必要な理由は? 仮説思考については、これまでチームでの実践経験がないため、上司に相談しながら取り組むことが望まれます。一方、データ収集に関しては、企業独自の情報をうまく活用することで、新商品の開発に役立つ可能性があります。また、来月更新される免税施策に関しても、その対応方法を検討していく必要があります。 新規取り組みの課題は? 組織の一員として新たな取り組みを始めるのは容易ではありませんし、チーム全体が仮説思考の本質を正しく理解しているかどうかも不透明です。来週から開始されるデジタルのショッピングクーポンの運用にあたっては、まずデータ収集を行い、半年先や来年度の数字を分析する可能性を模索するものの、まずはデータ収集自体に時間を要する点が懸念されます。

マーケティング入門

体験で魅せるオンリーワンの価値

商品単体の差別化は? 商品単体では他社との差別化が難しく、関連する体験を通じた+αの価値が重要であると感じました。たとえば、購買検討や実際の利用前後の体験を丁寧にヒアリングや観察分析することで、ターゲットが求める価値の体験を正しく把握し提供することができると思います。 体験が結ぶ感情は? また、体験は感情と密接に結びついているため、体験をうまく設計すれば価格競争に巻き込まれず、他社との差別化に繋がると感じました。顧客がいつ、何によって、どのような喜びを感じるのかを具体的に設計することで、ポジティブな体験はお客さまとの接点を強化し、長期的な関係構築にも寄与すると考えています。 オンリーワンの秘訣は? 具体例として、お菓子ではなく「おやつ」として情緒的な付加価値を届けるといった発想から、自社のオンリーワンとなれる強みを検討する重要性を再認識しました。施策を通じ、商品やサービスの提供だけでなく、体験価値の設計を意識しながら、さらに深い顧客理解に基づいた価値提供を目指していきたいです。 DM施策はどう改善? 一方、現状のDM施策では、お客さまへの提供や体験を通じた購買促進の設計が不十分であると感じています。今後は、フォローアップ段階においても顧客にとって価値ある内容を検討し、より良い体験価値の提供につなげたいと思っています。 来場イベントの工夫は? また、来場型のイベントにおいては、企画・運営の中で人員や時間に追われ、十分な体験設計ができていない部分を改善する必要があります。今後は、優先順位を明確にし、どこまで詰めることができるかを考えながら進めていきたいです。 感情分析の重要性は? さらに、自社がオンリーワンと考える強みについて、顧客が実際に体験した際の感情や効果をより深く分析することの重要性を感じています。顧客の声が集まりやすい環境であるにもかかわらず、それを十分に活かしきれていないため、今後は顧客分析の優先度をさらに高める必要があると強く認識しました。

クリティカルシンキング入門

思考の偏りを解消するクリティカルシンキングの力

クリティカルシンキングの目的とは? ワークを通して、思考は偏りやすいことがよく分かりました。クリティカルシンキングを学ぶ目的は、頭の使い方を知り、思考の偏りをなくすことだとわかりました。その際、有効な方法の一つがロジックツリーで、考えやすい部分だけを掘り下げないようにすることができます。私はアイデアが浮かんだ際に、物事のある一面だけを膨らませて進めようとする癖があるため、まずは目的達成に必要な要素を整理するようにしたいと思いました。 お客様の声にどう対応する? 私はソフトウェアの保守サイトの運営やコンテンツの制作を担当していますが、お客様アンケートなどで「情報は豊富にあるが、目的の情報にたどり着かない」という声を多くいただきます。この課題をクリティカルシンキングを学んで解決したいと考えています。お客様によって導入の目的、運用スキル、使いたい機能などが異なるため、それぞれの目的の情報にたどり着くためにどのような導線を用意すればよいのか?その際、どのような視点でお客様の行動を分析するのがよいのか?などを、社内の複数部門で連携し仮説を立てているのですが、いずれのシーンでも判断が難しい状況です。クリティカルシンキングで思考の制限を取り除くことができれば、このような場面で正しい状況判断ができ、効果的なCX改善につなげられると思っています。 思考制限を取り除くには? 自分の中で思考を制限してしまわないように、広くいろいろな立場の人の意見を収集して課題分析することが必要だと思いました。最近は会社の方針で時間の節約を求められるため、限られたメンバーの意見をもとに課題の改善検討を進めることが多くなっています。講座の中でも「社内の常識は非常識」という話が出ていましたが、社外の専門家の意見などを幅広く収集する機会を増やしてもよいと思いました。また、収集した課題をロジックツリーなどにあてはめ、要素分解することで、課題の本質が想定外のところにあることに気付ける機会を得られそうです。

クリティカルシンキング入門

情報リテラシーと本質を問う力で未来を拓く

学びを再確認するには? 今週は振り返りの時間でした。 ■講座を通して学んだこと 情報を疑問視し、分析し、論理的に評価することで、信頼性を見極め、正しい判断を行うことが可能になるということを改めて学びました。 考え方を研ぎ澄ますには? ■常に頭においておき、反復練習すること 人は「自分が考えやすい方向に考えてしまう」傾向があります。そのため、思考が偏らないよう、本当にそれでいいのかを自問自答し続ける訓練が必要です。本質に迫るために「なぜ」を繰り返し、問題の根幹に到達することが重要です。 問題解決にはまず「イシューを特定する」ことが必要です。それから「問いを残し」意識し続け、「問いを共有する」ことで組織全体に浸透させます。また、信頼できるデータや根拠を用意し、論理に一貫性を持たせることが求められます。そして、異なる視点や意見を考慮してバランスを保ち、感情に流されず冷静に判断することが重要です。背景や文脈を理解し、公正で倫理的な判断を心がけることも必要です。 プロジェクトに活かすには? ■実際のプロジェクトでの適用 システム導入プロジェクトでは、毎回のワークショップでベンダーの提案について議論します。この際、ベンダーの資料を読み解き、疑問点や言葉の定義の違い、目線が合っているかの確認を行います。前提条件の確認や、トリガーとなった事実の裏にある本質を見極めることは重要です。結論を出すに当たっては、軽率な判断を避けるべきです。 自身が運営するプロジェクトでも、本質的な目的を見据えた方向性を決定し、その目的に基づいた運営内容を構想します。対象となる役員や経営層、一般社員などに応じて適したスライドの作成や見せ方、言葉の選び方に工夫を凝らします。メッセージを明確にし、ピラミッドストラクチャーで根拠を整理することで、スライドの内容が大きく変わります。慣れるまでには時間がかかりますが、毎回対象ごとにピラミッドストラクチャーを作成することが重要です。

戦略思考入門

リソースを集中活用するススメ

リソース配分は正しい? 限られたリソースをどのように効果的に活用するかを考えることの重要性を学びました。すべての顧客に均等にリソースを割くのは非効率であるため、時間当たりの利益貢献度を基に優先順位をつける必要があります。このアプローチにより、成果が期待できない部分のリソースを大胆に削り、重要な顧客に集中することで、組織全体のパフォーマンスを向上させる戦略が明らかになりました。 ROIで判断する? また、ROI(投資対効果)という視点を活かして意思決定を行うことが効果的だと気づきました。各顧客の売上や利益率、時間当たりの利益貢献度を分析し、ROIが高い顧客にリソースを集中させることが望ましいです。さらに、顧客特性に応じて最適なアプローチを取ることで、ROIをさらに向上させることも可能です。たとえば、長期関係のある顧客には信頼を高めるサポートを、新規顧客には競合と差別化する対応が求められます。 業務見直しは必要? 日常業務においても、昔からの慣習に流されずに、その業務が本当に必要なのかを常に問い直すことが大切です。FAXや印鑑など、過去の流れで続けている作業が本当に不可欠か見直す必要があります。また、不要な業務は思い切って削減し、削減で生まれた余裕を付加価値の高い業務に振り分けます。 自動化は進んでる? 自動化についても常に考慮し、人手で行う業務をRPAや自動化ツールで代替できるかを検討します。その結果、実施可能な自動化プロジェクトをリスト化し、効果的な実行を目指します。 業務目的は何? さらに、業務の目的を定期的に問い直すことも重要です。「この業務は何のためにあるのか?」を見据え、目的に合致していない業務がないか確認し続けることが、より効率的な働き方につながると考えます。効率化の意識をチーム全体で共有し、改善案や気づきを他のメンバーと積極的に共有することで、全体としての効率化を支える体制を築いていきます。

データ・アナリティクス入門

ファネル分析で未病市場に挑む理由

数値分析の極意は? 数値分析では、プロセスごとに「率」にして検討することが有効です。A/Bテストは、同期間にランダムにユーザーを振り分け、その結果を比較する方法で、比較ポイントを絞ることが大切です。AIDAやAMTUL、AISASなど、プロセス設定に利用できるフレームワークは多様に存在します。また、ダブルファネルという概念もあります。これは、購買までのファネルと、購買後に他社に影響を与えるファネルが存在し、1人の顧客がその後の影響力で10にも100にもなる現代的な考え方です。 広告制約の壁は何? 私の業界では広告制約があり、顧客の声が届きにくいという問題があります。そのため、詳細な購買プロセスが追いにくく、単純なファネル分析は難しそうですが、未病分野の自費購入をターゲットとした市場には活用できる可能性があると考えています。営業部のプロセスにファネル分析を使用すれば、製品を少しでもよいと思ってもらえた後、どこがボトルネックになって採用決定に至らないのかを見極めることが可能です。AMTULが購買意思決定までのプロセスに最も近いと感じ、これを用いて考えています。採用までに多くのステークホルダーが関与し時間がかかるため、AIDAのような単純な興味や欲求だけでは購買に結びつかず、AMTULのように試用のプロセスが必須となるからです。 効果数値はどう変わる? プロセスとウォーターフォールチャートを掛け合わせた活用も試みています。プロセス段階に分けてグラフ化するのは初めてですが、採用後にカテゴリ別の売上内訳を見る際に使用します。ただし、プロセスが独自になりがちなため、段階設定には注意が必要です。さらに、ダブルファネルの考え方を応用し、購入施設からのエリア波及効果を数値で測る挑戦をしています。具体的には、1施設で売上が上がると、同医療圏内の売上や件数がどの程度上がるか、大施設の採用が小施設へどれほど影響を与えたかの数値化に取り組んでいます。

「分析 × 時間」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right