データ・アナリティクス入門

仮説で読み解く成功のヒント

仮説の基本は何? 今回の学習で、仮説について深く学びました。仮説とは、ある論点に対して一時的に立てる答えのことで、例えば、ノンアルコール商品の販売増加を見る際、対象となる消費者をビールが好きな運転者や妊婦などに分けて分析する、といった考え方が応用できると感じました。 仮説の役割はどう? また、仮説には問題解決のための仮説と、結論を導くための仮説があることを理解しました。時間軸として、過去、現在、将来の視点で検討していくこともポイントでした。 売れる理由は何? 具体的な例として、①なぜある商品が売れるのか、または売れていないのかについての仮説では、若い世代に人気で刺激的ではない味が影響している可能性や、商品が不安定なために安定した需要を得られていないのではないかといった視点が挙げられました。②なぜある地域や取引先で売れるのか、あるいは売れていないのかを考える際には、その地域に若い人が多いのか、高齢者が多いのかという点が仮説の根拠になり得るという点が印象的でした。 検証データはどう活かす? さらに、仮説を検証するためには比較可能なデータ収集が不可欠であり、アンケートを実施する際の設問項目の考え方や、どのようなアンケート内容が仮説と結論を結びつけるのに適しているかという点にも関心を持ちました。

戦略思考入門

迷い捨てROIで勝つ判断の秘訣

判断基準はどう選ぶ? 選択(捨てる)ためには、判断基準を持ち、複数の視点から仮定を置いて考えることが大切です。また、ROI(投資効果)も踏まえた上で判断する必要があります。顧客の利便性を第一に考え、伝統や惰性に流されず、専門家に任せるという意識も重要だと感じました。 バランスはどう取る? 優先順位の考え方においては、トレードオフの概念を学びました。つまり、何かを得るためには何かを犠牲にするということです。複数の要素が存在する場合、両立が難しいときには、それぞれのバランスを取り、効果が最大化するポイントを見つけることが求められます。ある要素同士が互いに相殺し合う場合には、どの要素に注力するかを明確にして、メリハリのある資源配分を行うことが最善の方法だと考えました。 戦略改善のコツは? 限られた時間の中で、常に優先順位を意識して作業を行っています。実際には捨てる選択をすることが多いと感じますが、その順位の付け方については、今ひとつ経験則に頼っている部分も否めません。日々の作業は何とか回っているものの、未来に向けた戦略を立てる際には、判断基準をより明確にする必要があると実感しました。今後は、各要素を数値化し、ROI(投資効果)をしっかりと分析することで、より合理的な判断ができるよう努めたいと思います。

データ・アナリティクス入門

明確な未来への第一歩

学びの整理はどう? 講座で得た学びを整理し、ありたい姿を描きなおすことで、これまでぼんやり感じていたことが明確になりました。今回の作業を通じ、今後の目標や現在抱えている課題、そしてその課題を解決するために実行すべきことが具体的に見えてきました。 次に何をすべき? また、受講を終えた今、次に取り組むべきことがはっきりしてきたと強く実感しています。仕事と並行しての学習が大変な時期もあり、あと少しで済ませようという気持ちにもあったものの、まだ足りない部分や今後への危機感を改めて感じることができました。そのため、次のアクションについてじっくり考える貴重な時間となりました。 経験はどう活かす? これらの経験は、モチベーションを保ち正しい方向性を模索する上での振り返りとして、大変意義があると感じています。たとえば、フレームワークの知識は、仕事で内部環境や外部環境を分析する際に具体的な切り口として役立っています。 自己研鑽はどうする? さらに、受講後も土曜日に翌週の課題に取り組む学習習慣を継続し、自己研鑽の時間を確保していきたいと考えています。加えて、実際の分析作業で不安を感じるExcelの使い方についても、実践を通して学びたいと思っており、まずは関係する講座を探すところから始めるつもりです。

データ・アナリティクス入門

目的再確認で拓く未来

なぜ目的は大切? 分析とは、比較を通して物事を評価するプロセスです。まず、データ収集や具体的な分析を始める前に、はっきりとした目的を設定することが不可欠です。目的が定まらない分析は、結果として次の行動に結びつかず、単なる数字遊びになってしまうリスクがあります。 どのように対象を選ぶ? そのため、目的を明確にし、適切な対象を選ぶとともに、多角的な観点から正しく比較することが大切だと考えます。データ分析に入る前に一度立ち止まり、目的に立ち返る余裕を持つことが、成功への第一歩となります。 どのように傾向を見る? 具体的には、顧客の属性データやアンケート結果から傾向を読み取り、次月以降の施策に役立てています。また、自身の働き方に関しても、どの業務にどれほどの時間を費やしているかを他者と比較し、業務効率の向上を図っています。 どうやって振り返る? このため、毎週金曜日に10~15分間の業務棚卸しの時間を設け、週次および月次での振り返りを実施しています。さらに、1on1などの機会を通じて、業務時間の使い方について他者から意見を聴取し、比較することで、より実践的な改善策を模索しています。一方で、対顧客の分析に関しては、常に目的を再確認し、施策ありきの分析にならないよう注意を払っています。

アカウンティング入門

図と比喩で辿る学びの旅

図式化と比喩の意味は? 図式化の手法が、全体の構造を把握する上で非常に有効であることを再認識しました。また、比喩表現が記憶に基づくイメージ形成に寄与し、内容をより分かりやすくしていると実感しています。一方で、簡単な言葉でシンプルに伝える作業が、意外にも難しいと感じました。短い講義の中にも多くの学びを得られたことを実感しています。 企業財務の背景は? 今後は、関心のある企業の財務情報について、時間軸で「なぜこの結果になったのか」を考察しつつ、相対軸で良否を比較する視点を持ちたいと思います。その背景にある原因や要因を徹底的に把握し、実際のビジネスに活かすための分析を行いたいと考えています。企業で起こったさまざまな出来事や変動の中に、ひそむストーリーを感じ取ることにも挑戦したいです。 決算報告をどう読む? 具体的には、決算報告説明会の内容と決算資料を並行して検証しながら考察を深め、業界内の比較も十分に行うことで、より多角的な視点を獲得したいと思います。さらに、他者とのディスカッションを通じて、理解を深めるとともに新たな気づきを得たいです。 最後に、新聞で興味を持った企業の決算報告資料を過去3年間にわたって読み取り、長期的な視点から企業の動向や変化を捉える訓練を積みたいと考えています。

データ・アナリティクス入門

仮説思考で業務が変わる瞬間

仮説の幅は広い? 仮説を考える際は、正しい答えを一つだけ見つけることが目的ではなく、論点に対する仮の答えとしてフレームワークを活用し、幅広い可能性を検討することが大切だと感じました。決め打ちに陥らず、常に複数の仮説を立てる姿勢が重要です。 仮説の意義は? また、仮説を考えることには、検証マインドの向上による説得力の増強、問題意識の向上、対応スピードのアップ、そして行動の精度向上という4つの意義があると学びました。これらの点は、データ分析にとどまらず、日常の業務においても活かせる有用な考え方だと思います。 難しさはどう? 仮説思考というと難しそうに感じるかもしれませんが、普段の業務で些細な疑問を感じたときに自分なりの原因を考え始めているのであれば、実はすでに仮説思考を実践しているのだと実感しました。今回学んだ問題解決のプロセスを参考に、日々の業務に仮説思考を取り入れることができそうです。 小さな課題は? まずは、短時間で取り組める小さな課題に対して、意識的にフレームワークを活用し仮説の幅を広げることから始めたいと思います。その上で、分析時の適切なグラフ選定や結果の分かりやすいビジュアル化といった、今まで苦手としていた分野の改善にも取り組んでいこうと考えています。

データ・アナリティクス入門

仮説と現場で読み解く数字の物語

現場で何が起きる? 平均値などの代表値を把握するだけではなく、現場で実際に何が起きているかを想像しながらデータに向き合うことが大切です。そのため、自分自身で仮説を立て、仮説検証型で分析を進めることが求められます。分析の目的に応じて比較する対象も変わるため、たとえば「夏の気温は本当に上昇しているのか」という問いに対して、単純に1年前のデータや他の地点のデータと比較するだけでは、十分な答えは得られにくいでしょう。 ビジュアルで何が分かる? また、代表値の理解をより精緻なものにするために、データのビジュアル化を試みることが重要です。第三者に伝えるときだけでなく、自分自身で数値を分析する際にも、数字だけでは見逃しがちな現場の情報に焦点を当てるため、ビジュアル化の活用を心がけましょう。 AI活用はどう役立つ? さらに、医療施設ごとの売上や従業員ごとの活動履歴など、大量かつ複雑なデータに関しては、定型的な加工に陥りやすい傾向があります。まずはデータの分布を把握するためのビジュアル化を行い、分析の目的に合ったデータの特徴を考察する時間を確保することが推奨されます。このプロセスにはAIの活用が有効であるため、迅速に作業に取り掛かれるよう、使用するプロンプトをあらかじめ保存しておくと便利です。

データ・アナリティクス入門

比較と目的で開く新発見

何を比較すべき? 分析について学んだことは大きく3点あります。まず、分析は何かと何かを比較することで初めて意味を持つという点です。単に数値を並べるだけではなく、比較対象を明確にすることで発見が生まれます。 目的は何か? 次に、分析には明確な目的が必要であるということです。目的がはっきりしていなければ、どの数値を見て何を判断すべきか分からず、結果として行き当たりばったりな分析になってしまいます。 チーム連携はどう? そして、チーム内でのコミュニケーションの重要性です。分析に取り組む際は、目的や比較する基準についてメンバー全員で認識を合わせることが不可欠であると実感しました。 業務の実態は? 私の担当業務は中小企業向けのインサイドセールスの運営です。日々、コール数、コール時間、商談化数、受注数といった指標の管理に努めるとともに、受注商材の傾向やメール配信からの顧客獲得状況なども活用しています。これらのデータを比較する際には、まず各項目の条件が揃っているか、そもそもの目的は何かを確認することを常に意識しています。 成果向上のヒントは? 今後は目的や比較基準の確認を徹底し、チーム全体で正しい分析の考え方を共有して、より成果が出る体制を築いていきたいと考えています。

クリティカルシンキング入門

図で読み解くデータの真実

視覚化のコツは何? 今回の講座を通じて、視覚的に分かりやすい図表の作成や、元データを複数の視点で分解してグラフ化する手法を学びました。情報を可視化することで、データの本質に迫ることができ、分析の精度が高まる点が非常に印象的でした。 分解視点はどう活かす? また、データの分解方法として、When(時間)、WHO(人)、HOW(手段)の視点を活用し、仮説を立てながらデータを読み解くアプローチは、理論と実践をうまく結びつけると感じました。こうした手法により、伝えたい内容を論理的に整理し、より明確に説明できるようになると思います。 情報分解の秘訣は? さらに、MECEの考え方を用いて情報を漏れなく、ダブりなく分解する技術についても学びました。層別分解、変数分解、プロセス分解といった具体的な切り口を通して、第三者にも分析の背景や意図を的確に伝える方法を身につけることができました。 課題抽出はどう確認? 最後に、アンケート結果や経費使用の分析を通じて、課題の抽出と適正な施策検討につなげる事例は、実務における分析の重要性を改めて認識させられる内容でした。自分自身でデータを作成する際や、他者のデータを検討する際に、適切な分解と背景の説明が説得力を高めるポイントであると感じました。

クリティカルシンキング入門

仮説検証で広がる学び

イシューはどう特定? イシューの特定は容易ではなく、常に分解を行わなければ混乱に陥りやすいと感じています。常に「イシューとは何か」を意識し、その切り口となる仮説を用意しつつ、多角的に検証する必要があります。実際、以前は思い込みで打ち手を考えていたときに比べ、約30倍もの時間を必要とすることを実感しました。 打ち手は何が有効? クライアントの現状に対し、どの打ち手が有効かを検討する際、これまで見慣れたSNSや特定のプラットフォームだけに頼るのではなく、リアルな情報も加味しながら、あらゆる角度からイシューを特定する重要性を改めて認識しました。 仮説の検証はどう? イシュー特定のためには、直感に頼らず、常に仮説を立てた上でデータを分析することが欠かせません。仮説の検証が十分に進まない場合は、別の仮説を設定し、さまざまな視点から考察する習慣を身につけることが大切だと感じています。 構造再考はどうすか? 自身の業務に照らし合わせると、クライアントの課題特定についてはまだ不十分だと感じました。ピラミッドストラクチャーを用いた際に根拠が不安定になる場合は、根拠を補足するための情報を集める必要があるか、もしくは一度構造を解体して再考する選択肢も考えるべきだと思います。

戦略思考入門

規模経済の真実に迫る学び

本当に規模の経済は信頼できる? 今週の学びで特に印象に残ったのは、規模の経済性の演習回答にあった「もっともらしく聞こえる定石であっても、自社が置かれた状況に必ずしも当てはまるとは限らない」という点です。普段は規模の経済性を当然のことと考えがちですが、固定費や変動費の区分だけでなく、時期や機会といった変動要素も考慮することで、より多角的な分析ができると感じました。 不経済と習熟はどうなる? また、規模の経済性に加えて、規模の不経済性がどのタイミングで発生するのか、自分自身の業務においても分析してみたいと思います。習熟効果については、ある一定の動作を繰り返す業務やイレギュラーの少ない業務であれば、OJTの効果により短期間で自然と身につくと考えられます。一方、部門や担当者の業務範囲が広く変動が伴う場合は、習熟効果を得るまでに時間がかかり、一定の水準に到達する前に離職リスクが高まる可能性もあります。そのため、各業務ごとに期待する習熟レベルや期間を明確に設定する必要性を実感しました。 接続はなぜ切れた? なお、グループ討議中にオンライン会議システムの接続が切れてしまい、申し訳ありませんでした。19時過ぎであったためか、サイトのリンクが切れて戻ることができませんでした。

データ・アナリティクス入門

プロセス分解で見つけたヒント

なぜ分解して考える? プロセスを分解して問題の本質に迫る手法について、非常に分かりやすい事例から学ぶことができました。特に、採用プロセスの一部である中途採用面談や、顧客への提案における在庫差異の問題解決に、このアプローチを活用できると感じています。また、ABテストにおいては、条件をできる限り同一とし、検証範囲を絞るための仮説設定が重要である点も再認識しました。 採用面談、何が問題? まず、中途採用面談に関しては、自身が関与する採用活動において、プロセスのどの部分で問題が発生しているのかを明確にするため、面談調整に要する日数と採用結果の情報を人事部から収集することを検討しています。この情報をもとに、面談調整に時間がかかる原因を特定し、改善策を提言することで、採用率の向上を図ることができると考えています。 在庫の差異、どう解決? 次に、顧客への提案、特にシステム間の在庫差異に関する課題解決では、既に現状の業務プロセス分析は実施していますが、課題が発生しているプロセスの粒度が細かすぎるため、より単純化した形で説明する必要性を感じました。問題となりうる箇所を明示した上で、システム改善または運用プロセスの変更のいずれかを提案し、顧客にとって最適な解決策を提示していく考えです。

「分析 × 時間」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right