データ・アナリティクス入門

学びとデータのワクワク発見

データ集約はどう行う? 今週は、データの見方を学びました。まず、データを数値に集約する方法として、代表値と散らばりの考え方を理解しました。代表値には平均、荷重平均、幾何平均、中央値などがあり、よく使われる平均値は外れ値に弱いことから、場合によっては中央値が用いられることもあると知りました。また、状況に応じて数値に重みを加える荷重平均や、売上の変化率などに使われる幾何平均がある点も印象的でした。 標準偏差の意味は? 次に、データの散らばりを示す標準偏差について学びました。標準偏差は、平均値からのばらつきを表し、その値が大きいとデータが広く散らばり、小さいと平均値近くに集まっていることを意味します。 分析方法をどう考える? さらに、集約されたデータを分析する際のアプローチについても考えました。一つは、特徴的な箇所に着目する方法、もう一つはデータ間の比較を通じて差異を見る方法です。いずれの方法でも、グラフを見る前に仮説を立て、そのギャップについて深掘りすることが、良い分析につながると感じました。 全体把握の重要性は? 最後に、仕事上でデータを扱う際、自分の仮説の確認だけに偏らず、まずは代表値やばらつきなどの基本的な数値を俯瞰し、対象のデータ群全体を把握することの大切さを再認識しました。その上で、加工されたデータを見ることで、より客観的かつストーリーとしてデータを理解できると考えています。

データ・アナリティクス入門

幾何平均に出会った瞬間

代表値の選び方は? データの分布を把握する際、代表値の選び方は非常に重要です。平均値は外れ値の影響を受けやすいのに対し、中央値はその影響が少なく、より正確な中心傾向を示すことがわかりました。また、平均値には単純平均、加重平均、幾何平均の3種類があるという点も新たな発見でした。特に成長率の変化を評価する場合に利用される幾何平均という概念は、初めて聞いた言葉で印象に残りました。 散らばりはどう測る? 一方、データの散らばりを確認する方法として、数値で表す場合は標準偏差がよく用いられ、また、ヒストグラムなどの可視化手法が直感的な理解に役立つことが理解できました。 分析の視点は何? これまでのデータ分析では、単純平均と加重平均に頼る傾向がありましたが、今後は中央値やヒストグラムといった手法も積極的に活用し、データの特徴を多角的に捉えていく必要があると感じています。さらに、これまで分析の選択肢に含めてこなかった幾何平均にも意識的に取り組み、より正確な分析を目指したいと思います。 BIツールの使い方は? また、BIツールを活用して経営ダッシュボードを構築する際には、代表値と散らばりの両面からデータをビジュアルに表示できるよう工夫していく予定です。 幾何平均はいつ有効? 今後は、幾何平均がどのような場面で最も有効に働くのか、具体的な利用シーンについても更に知識を深めたいと考えています。

アカウンティング入門

企業の財務がわかるB/Sの魔法

貸借対照表の魅力は? 今週は、貸借対照表(B/S)を通して会社の財務状態を読み解く基本を学びました。特に、「資産=負債+純資産」という関係式が、企業がどのようにお金を使い、どこから資金を調達しているかを明確に示す点が印象的でした。 資産と負債のバランスは? 資産は、設備や在庫、現金など、会社が具体的にどのような財産を保有しているかを示します。一方、負債は、将来的に返済が必要な借入金や買掛金を意味し、純資産は返済義務のない自己資本、すなわち出資や蓄積された利益を表しています。この三者のバランスを見ることで、企業の安全性や自立性を判断できることが分かりました。 財務の実際は安定? 実際のビジネスでは、例えば自社の貸借対照表を確認した際に、負債比率が高いと将来の返済に対するリスクや資金繰りへの影響が懸念され、逆に純資産が充実している場合は、外部環境の変化にも柔軟に対応できる安定感があるといえます。これにより、財務数値の背景にある企業の状況を掘り下げる視点を養うことができました。 信用調査の効果は? さらに、営業アシスタントとして取引先の信用調査や社内報告を行う際、B/Sから企業の財務体質を把握するスキルは非常に有用です。具体的には、月に一社の決算書を読み、資産・負債・純資産のバランスに注目した簡単な分析メモを作成する習慣を身につけることで、業務に直結する知見が深まると感じました。

データ・アナリティクス入門

データに飛びつかず、考える力

比較の基本って何? 分析とは比較であるという基本原則を再確認しました。講座では、次の3つの軸に沿って考える重要性が強調されました。まず、プロセスとして仮説思考を実践し、次に5つの視点から多角的に状況を捉えること。そして、アプローチとしてグラフを活用する際には、「どの仮説を立てるか」「何と比較するか」「どのグラフが適切か」という点を検討する必要があると学びました。 立ち止まって考える? この学びを自分の業務に活かすため、まずはデータに飛びつく前に一度立ち止まり、ペン(あるいはキーボードに頼らない)を置いて、分析の目的と複数の仮説を明確にすることの大切さを実感しました。営業活動では、数字が絶えずやってきます。得意先や自社の各部門から提示される数値に対し、ただグラフを作成するのではなく、「データ分析を通じてどんな成果を得たいのか」しっかりとした作戦を練ることが、主導権を握るために必要だと感じました。 見える化の効果は? さらに、「顧客フォーキャスト」と「自社生産計画」を見える化し、グラフ化および定期的な更新を仕組み化する提案も印象的でした。この仕組みにより、営業部門と製造部門が共にデータを活用し、サプライチェーンマネジメントの強化が期待できると考えています。 今後の戦略はどう? 今回の講座で得た知識を、今後の業務に活かし、より効果的な分析と戦略立案に取り組んでいきたいと思います。

データ・アナリティクス入門

平均値だけじゃない!全体を読む力

全体像はどう理解? データ分析において、従来は個々の指標の数値に注目していましたが、全体像を俯瞰する視点の重要性に気付かされました。ミクロな比較だけでなく、マクロな観点からデータ全体の分布に目を向けることで、より精度の高い理解が得られると感じています。 分布の意義はどう? 単に平均値だけに頼るのではなく、各指標のばらつきや分布の状況を把握することが、好調な要因や低調な要因を見極める上で大いに役立ちます。利用者の属性ごとにどのような傾向があるのかを明確に掴むためには、データ全体を広い視野で捉える必要があると実感しました。 層ごとの違いは何? たとえば、ある教育機関の利用者分析では、一部の層でばらつきが大きく見られる一方、他の層では比較的安定した数値が示されていました。こうした違いは、全体のデータを俯瞰することで初めて正しく理解できると考えます。 ツール選びはどうする? 私自身は、常に分布と俯瞰的な視点を忘れないよう、日々の学習の中で意識しています。平均値だけでなく、各種指標の分布を把握するためのツール構築にも取り組み、より具体的かつ実践的な分析に努めています。 仲間とどう共有する? また、周囲の仲間にも、平均値一辺倒にならず、データ全体の傾向を把握する大切さを伝えるよう心がけています。この学びを通じ、より深い洞察と分析力の向上を目指していきたいと考えています。

データ・アナリティクス入門

データ分析の本質を再発見!

分析と整理の違いは何か? 「分析」、「収集」、「整理」はそれぞれ異なる作業です。データ整理で分析が終わることもしばしばあり、比較対象があいまいになることもあります。また、見せ方に時間をかけすぎると、「相手に伝えたい」という本来の目的が不明瞭になることが多々あります。これは、「分析とは比較である」ことや「目的に立ち返ること」がしばしば抜け落ちがちだからではないでしょうか。楽な方に流れる思考や、目に見える分かりやすいものに飛びつきやすいバイアスに引っ張られる癖があります。自分の特徴を含めてこれらをしっかり俯瞰して整理しておかないと、学びの方向性やその捉え方がずれてしまう可能性もあると感じました。 常に数値を更新する重要性 販売状況や市況状況、社内状況の分析を進める中で、過去の基準や初期値がたびたび変更されてきました。分析が比較である以上、常に更新された数値のみが注目されることが多いです。このような状況では正確な分析ができず、意思決定に繋がらないと感じています。これはとても危険なことかもしれません。 データ整理はなぜ重要か? 様々な分野で目的とされることを視野に入れ、使用されるデータの洗い出しを行います。比較するためにも整理が必要ですので、いつでもデータを抽出できるよう、整理を行うことが重要です。整理された状態から、それぞれの目的に合わせた比較基準を設計することが求められます。

データ・アナリティクス入門

ギャップに挑む学びの一歩

問題の本質をどう捉える? 問題解決プロセスについて学んだ内容は、まず「ありたい姿」と現状を比較し、そこに存在するギャップに着目する点から始まります。その上で、問題を構成する要素に分解し、ロジックツリーを用いながら要素間の関係を整理していく方法を学びました。ここでは、MECEの原則を意識しながら、WHAT、WHERE、WHY、HOWといった各視点で問題を詳細に捉えていくプロセスが重要です。特に、どこに問題が潜んでいるか(WHERE)の特定が解決への大きな手がかりとなります。 広告関連の要因は? たとえば、広告効果を測るデータで前回のCPと比較し、数値に大きな乖離が見られる場合、このプロセスは有効に働きます。その際には、広告以外の宣伝活動があったか、テレビで取り上げられたか、他社が類似のCMを始めたか、または在庫の問題がなかったかなど、さまざまな要因を洗い出して、どうすれば問題が解決できるかを検討することが求められます。 部門へ依頼する理由は? 現状では、業務スコープの中でデータが正しく取り込まれ、出力される段階で分析が終了してしまっていることが多く、結果としてその分析作業は別の部門に依頼しているケースが見受けられます。今後は、アナリストとしての視点を強化し、データを直接営業チームに提供できるよう、問題解決プロセス全体に対する理解と取り組みをさらに深めていきたいと感じました。

戦略思考入門

戦略的思考で描く自分だけの道

戦略的思考は何? 戦略的思考とは、目指すべきゴールを明確にし、その達成に向けて最短で実現するための手段と計画を立案する方法であると学びました。その中で特に重要だと感じたのは以下の3点です. なぜ自分を知るの? まず、目的に対する自分の特徴を把握した上で最短ルートを描くことです。自分の特性を理解せず計画を立てると、方向を誤る可能性があります. 捨てる決断とは? 次に、捨てる(選択する)勇気を持つことです。時間や資源は有限であり、その中で最適な解を導くためには、何かを捨てることも必要です。捨てるとは、異なる考え方を持つこともあるのだと改めて学びました. プレゼンはどう作る? プレゼン資料の作成や規格の提案を行う際には、戦略的思考を用いて数値的根拠を示し、分析した結果を提案できるようにしていきたいと思います。それに加え、話し方のスキルや数値を分析・分解する能力も身につけていきたいと考えています. 学びはどう生かす? 講義でも述べられていた通り、学ぶだけではなく、実践してアウトプットすることが重要だと感じました。学んだことはまだ表面的な部分なので、自分のものにするためには実際に使う必要があります。まずは、小さなことでもよいので、戦略的思考を用いて考える習慣をつけること、そして、仲間にも機会があればその考えを伝える活動を行っていきたいと思います.

データ・アナリティクス入門

平均だけじゃ語れないデータの秘密

データ分析の秘訣は? 今週は、数字に集約してデータを比較・分析する手法を学びました。単純な平均値だけでなく、データの中心を示す代表値や、どのようにばらついているかを示す散らばりの視点からも計算・分析することで、データの偏りや傾向を正確に捉えることができると理解しました。一方で、単純平均だけに頼ると誤った分析結果に至る可能性があるという点も印象的でした。特に、実践演習での受講者の平均年齢の設問において、単純平均では実際のデータの分布と乖離があることが実感できました。 最適計算方法は? また、代表値や散らばりには複数の計算方法が存在することも学びました。状況に応じて最適な計算方法を選択し、仮説の検証に役立てていきたいと考えています。 人流データはどう見る? 例えば、人流データの年度別や地域別での比較において、従来は増加率を用いることが多かったため、得られる情報が限られていると感じていました。今回学んだアプローチを踏まえ、具体的な仮説のもと、どの計算方法が最も有効かを検証していくつもりです。 グラフの意図を探す? 自分の業務では、可視化されたグラフから示唆を得る場面が多いですが、まずはそのグラフがどのようなデータ項目から構成されているのかを数値で確認し、どのような意図で作成されたのかを図表とともに理解することを意識して取り組んでいきたいと思います。

クリティカルシンキング入門

視野を広げるための問いかけの力

分析時に問いかけの重要性とは? 分析の目的を「問いかけ」から始めることの重要性を学びました。具体的なテーマを最初に決めてしまうと視野を狭めてしまう可能性があります。そのため、「何のために?」と問いかけることからスタートし、具体化することが大切です。また、チームで物事を進める際には、ゴール(目的)を明確にしておくことで、本質から脱線することを防ぐ効果があると理解しました。この認識を忘れないように、何度も共有することを徹底したいと思います。 新規企画にどう役立てる? 新しいサイトやサービスの企画や改善の際にも、この方法が役立つと感じました。たとえば、上司から「このシステムを導入するために資料を作って会議をセットしておいて」と指示を受けることがあります。その際、イシューを明確にしておくことが効果的だと思いました。 効率的なミーティングの準備法は? これまで私は、新しいサイトやサービスを企画する際、「●●について」とテーマを限定してキックオフの資料を準備していました。今後は、事前に情報を分解し、目的を問いかけることでテーマを具体化した状態で会議に望もうと思いました。責任者からスピーディーな改善を求められることが多い中、これにより時間の節約にも期待が持てます。また、データ分析を用いて現状の数値をしっかり把握することで、改善後の効果測定も行いやすくなると感じました。

クリティカルシンキング入門

数字の魔法:分解から見える新世界

数字をどう分解する? 数字を分解することで、新たに見えてくるものがある。しかし、どのようにその数字を分解するかによって、見える内容が大きく変わるため、その切り口が重要である。分解のパターンはすぐに思い浮かぶものではないので、日々数字に慣れ親しむことが必要だと感じた。さらに、加工や分け方を考える際には、ある結果が出るだろうといったバイアスを自覚し、数字を見る姿勢を持つことが大切だと考える。また、数値やグラフの見せ方に注意を払い、一旦落ち着いて数字を疑う必要がある。一方で、受け取る側はそのままを信じてしまいがちである。 データはどう精査する? プロジェクトの進捗や品質を分析する際には、単に多い・少ないだけでなく、時間経過での変化といったデータを見る観点も必要であり、これにより状況を正確に把握できるようになる。収集するデータは多いに越したことはないが、多すぎると、メンバーへの負荷やコストが増加するため、取得するデータは十分に精査されるべきである。 問題をどう整理する? プロジェクトにおける問題や課題を整理し、定量的に測れるものをデータ収集の対象とすることが求められる。そして、上司などに説明して自分以外の視点からの意見を取り入れ、多角的に物事を捉えてブラッシュアップしていくことが重要だ。日常生活でもニュースなどの数字に興味を持つ習慣をつけることが大切である。

データ・アナリティクス入門

数字の裏側に潜む物語

分ける理由は? 先日のライブ授業では、ワークを通じて「分けて見ること」と「比較すること」の重要性を学びました。データを全体で捉えるのではなく、商品や期間ごとに分け、前の商品と比較することで、これまで見えにくかった課題や傾向が明らかになる点を実感しました。さらに、分析の過程で仮説を立て、その仮説を検証するためにデータを集めることで、課題の原因がより明確になり、具体的な対策を講じやすくなると感じました。 分類で見える? これまでの生産業務では、全体の実績や結果だけを見て対応していた面もありました。しかし、今後は部門別、商品別、時期別などにデータを細かく分類し、前年比や他部署との比較も取り入れることで、具体的な改善点を抽出できると考えています。 仮説で検証する? また、数値の変動に対して「なぜこのような結果になったのか」という仮説を自分なりに立て、実際のデータや現場の声を確認して検証するプロセスを習慣化することで、業務改善に向けた提案の質を高めていけると考えています。 成果を活かす? 今回の授業で得た知見を生かし、今後は実績データを部門別や月別に分類し、前年同月比や他部署との比較を通して課題の可視化を進めていきます。加えて、数値の変化に対する仮説の検証を、追加のデータ収集や現場のヒアリングを通して行い、具体的な改善策につなげていくよう努めます。

「分析 × 数値」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right