アカウンティング入門

高級感と気軽さ、カフェ経営の秘密

非日常カフェのリスクは? week1とweek2を通して、2つの異なるカフェのビジネスモデルについて学ぶことができました。ひとつは、非日常の高級感を提供するコンセプトのカフェで、高単価な商品設定に合わせた売上原価や販管費がかかる点と、簡単に価格を下げることのリスクを理解しました。 日常カフェの戦略は? 一方、日常的な気軽さをコンセプトに据えたカフェでは、薄利多売モデルをとるため、商品価格の低さに加え、売上原価や販管費をできるだけ抑える工夫が求められていました。また、固定費を賄うために多くの顧客に購入してもらう必要がある点も学びました。 収益の違いは? この学びから、同じ業種であっても、ビジネスモデルによって収益性や費用の構成比が大きく異なることが明らかになりました。今後、同業他社との比較において、販売単価と特に販管費の構成比がどう異なるのかを詳細に分析していきたいと考えています。 PLギャップをどう? さらに、財務三表を公開している企業のデータを収集し、自社のPLが目指すビジネスモデルとどの程度一致しているか、またどの項目にギャップがあるかを検討することが重要だと感じました。ギャップが見られる場合には、どのような施策で戦略と数値を整合させるかという具体的な改善案を出していくことが課題となるでしょう。

データ・アナリティクス入門

データ分析で見つけた新たな気づきと行動力

解決策をどう選ぶ? 適切な解決策を決定する際には、決め打ちせずに他の仮説から導き出されるHowも考慮することが重要だと感じました。自社が現状で何を優先すべきかを考え、解決策同士を比較しながら適切な選択をする必要があります。そのためには、常に目的と優先事項を意識し、立ち戻って再考することが必要だと思います。 行動が生む成果とは? 完璧を求めすぎるあまり、仮説の検証ができない、考えすぎて動けなくなることもあります。ある程度の目途がついた時点でまず行動することが、結果的に良い仮説を生むことになります。 データ整理の新たな切り口 データを切り口を変えて整理する方法について述べます。物流会社で専用アプリを使用してトラックの待機時間を集計していますが、単なる集計だけでは不十分です。時間帯別や事業所別など切り口を変えてデータを整理し、今後の活用方法を示す必要があります。 業務プロセス改善の手順 問題箇所を特定し、各事業所の業務プロセスのどこに起因しているかをグループ内で議論したいと考えています。最終的には、待機時間の集計作業から業務プロセス改善まで話をつなげたいと考えています。そのために、本講座で学んだ「客観的にわかりやすく数値化して説明する」ことを意識しながら、メンバーと議論を続けていこうと思います。

データ・アナリティクス入門

比較で見える新たな視点

比較方法はどう決める? 分析の基本は比較にあります。分析対象をただ単に見るのではなく、相違点や類似点を明確にするため、対比できる条件を設定しながら進めることが重要です。 数値の意味はどう捉える? 定量分析を行う際は、単に数値の平均値や個数を求めるだけではなく、その背後にある意味を捉えることが求められます。例えば、男女のデータ分析においては、単位に数値を割り当てた場合の平均値そのものに意味はなく、それぞれのグループの人数や全体に占める割合を把握することで、ターゲットや戦略を導く上で有効な情報が得られます。 グラフの選び方はどうする? また、データの視覚化は、分析結果を他者と共有する際に非常に有効です。グラフを用いることで、複雑な情報も整理され一目でわかるようになりますが、データの特性に応じた適切なグラフ形式を選ぶことが大切です。 仮説設定をどう見る? さらに、分析においては、目的や仮説を明確にしてから着手する姿勢が重要です。分析する際は、比較対象となる条件を十分に整え、個々のデータに対してどの指標(個数、平均値、標準偏差など)を用いるかを慎重に検討することが必要です。自分が伝えたいメッセージと、相手がどの程度の情報を理解できるかを意識しながら、適切なグラフや表現方法を選ぶことも忘れてはなりません。

クリティカルシンキング入門

数字の裏側へ一歩踏み出す

分析の丁寧さは? 教材の事例を通して、分析の丁寧さがいかに現状把握に直結するかを痛感しました。細かな分析を怠ると、本来のイシューを見誤ってしまい、解決策も誤ったものになってしまう可能性があると理解しました。また、施策のタイミングが効果に大きく影響するため、現状分析に再度立ち戻る重要性を感じました。提示された数字から更に見えにくい指標を導きだし、その裏に隠れた課題を発見することも大切だと学びました。 数字は何を語る? 数字を分解し、それぞれの数値が持つメッセージや背景を考える作業は、普段あまり扱わない分野であったため難しさを感じました。しかし、新聞やニュースで見かける数字を自分なりに解釈し、分析することができるのではないかという自信にもつながりました。さらに、グラフの種類や見せ方の工夫の大切さについても演習を通して再認識しました。 数字に慣れるコツは? とにかく、数字に慣れ、しっかりとした分析を行うことが重要だと感じました。苦手意識にとらわれず、興味のある分野から取り組んでいくことで、数字を楽しむことができるのではないかと思います。ビジネスの現場では、感覚的な判断ではなく、数字を用いて現状を明確に把握し分析することが必須だと改めて実感し、この講座を受講した初心を取り戻す良い機会となりました。

データ・アナリティクス入門

データで紡ぐ成長の物語

データ整理は安心? データの切り出し方について、以前は数字が欲しいならこれといった感覚で扱っていたため、具体的に整理する作業が非常に有意義でした。成長率の求め方についても久しぶりに見直し、これまで間違った計算方法を用いていたことに気づけたのは大きな収穫です。 分布分析の効果は? 定量分析の手法として、代表値と分布に注目し、データをビジュアル化してより理解しやすくする方法を学びました。平均値が外れ値の影響を受けやすいという点に加え、単純平均、加重平均、幾何平均、中央値といった代表値や、標準偏差を用いた散らばりの把握、さらにはヒストグラムでばらつきを表現するテクニックが印象に残りました。 データ活用の秘訣は? また、ECにおける購入者分析や売上、アクセス解析にこの知識を活かせると感じました。特に、複数の商材を取り扱う場合のデータ集計処理について、最終的に求める数値や、それをどのようにビジュアル化すれば良いのかを意識したデータ分析ができるようになりました。 感覚から論拠に? これまで感覚的に行っていたデータ処理について、なぜその手法を用いるのかを説明できるようになり、自信がつきました。今後は月次のアクセス状況の説明にも、より論拠をもって提案し、販売方針や経営判断に結びつけていければと考えています。

データ・アナリティクス入門

業務に役立つ分析スキルを身につける方法

予測を立てる重要性は? グラフなどの資料を見る際、自分なりの予測を立て、仮説を立てて実態との違いを確認することは重要です。このプロセスでは、仮説の誤りをマイナスに捉えず、新たな課題や問題に気づく機会として扱うことが求められます。 分析のサイクルをどう回す? 分析の基本である「目的・仮説・データ収集・仮説検証」のサイクルを回すことについては、業務で分析を行う際に疎かになっていたと反省しました。数字に集約した分析を学ぶなかで、代表値(単純平均、加重平均、幾何平均、中央値)や散らばり(標準偏差)のそれぞれが適した状況で使い分けることが重要であると再認識しました。 患者数低下の原因とは? 紹介患者数の低下対策を立案する際、まず分析のプロセスをしっかりと踏むことが大切です。特に目的を明確にすることで、求めたい結果を得るためのポイントとなります。次に、どの視点で分析を進めるかを判断し、グラフや数字を用いて実行していきます。 具体的には、紹介患者数低下の分析では、近隣医療機関からの紹介の減少が課題(目的・問い)となります。減少の要因について仮説を立て、その後、取るべき分析の視点(インパクト・ギャップ・トレンド等)を考慮してデータを収集し、グラフ化・数値化します。最後に、分析結果と仮説を検証し、対策を立案します。

データ・アナリティクス入門

数値を超えて感じる学び

比較基準はなぜ? 率の比較を行うことで、比較の基準を統一できることが分かりました。実践におけるクリック率やコンバージョン率の違いを、単に数値だけで良し悪しを判断するのではなく、プロセスを分解して問題点を洗い出す視点が重要だと感じました。その結果、新たな気づきや解釈が生まれる可能性があることも実感しました。 幅広い思考はどう? また、原因を探る際には「思考の幅を広げる」ことが大切であると分かりました。抽象的な要素を積極的に取り入れ、そこから掘り下げる手法が効果的であるという点も大きな収穫です。 集計活用はどうする? 実際の業務でどこまで活かせるかは未知数ですが、今回の経験を基に、依頼されたデータの集計を活用して分析に取り組んでみようと考えています。職場の方からもアドバイスをいただき、お支払いされた方の年代や件数などから比率を算出し、それらを抽象的な観点で分析することで、販売活動に活用できるデータへと繋げられないか検討していきたいと思います。 分布の謎は何? まずは抽出したデータから比率を計算し、年齢などの属性が支払いにどのように影響しているのか、その際の母数の設定についても検討していきます。その後、なぜこのような分布になるのか、概念的な原因を考え、さらに深く掘り下げてみたいと考えています。

データ・アナリティクス入門

仮説とデータが紡ぐ物語

分析の始まりはどう? データ分析は、まず解決すべき問題を明確にし、最終的な結論のイメージを持つところから始まります。すなわち、最初に仮説を立て、what、where、why、howという流れに沿って必要な情報を整理することで、分析の方向性を定めることが大切です。 データはどのように収集? 次に、必要なデータを収集します。その際、実際の数値と割合の両面から確認を行い、一方に偏らないバランスの取れたデータ把握を目指します。必要な情報が不足している場合は、自らデータを集める方法も検討すべきです。評価方法においては、あいまいな表現や中間的な回答を避けることが重要です。 図表でどう伝える? 収集したデータは、次に加工して見やすい図表などにまとめます。どのような表現方法がデータの散らばりや相関を直感的に理解させるかを判断し、情報を具体的かつ明確に提示することが求められます。 仮説はどう再検証? そして、整理されたデータをもとに、当初の仮説に沿って分析を進め、発見に結びつけます。この過程では、what、where、why、howの各側面で原因と結果を再確認し、客観的な視点で全体のストーリーを見直すことが大切です。また、既存の仮説にとらわれず、新たな価値ある仮説の構築に努めることも求められます。

戦略思考入門

迷い捨てROIで勝つ判断の秘訣

判断基準はどう選ぶ? 選択(捨てる)ためには、判断基準を持ち、複数の視点から仮定を置いて考えることが大切です。また、ROI(投資効果)も踏まえた上で判断する必要があります。顧客の利便性を第一に考え、伝統や惰性に流されず、専門家に任せるという意識も重要だと感じました。 バランスはどう取る? 優先順位の考え方においては、トレードオフの概念を学びました。つまり、何かを得るためには何かを犠牲にするということです。複数の要素が存在する場合、両立が難しいときには、それぞれのバランスを取り、効果が最大化するポイントを見つけることが求められます。ある要素同士が互いに相殺し合う場合には、どの要素に注力するかを明確にして、メリハリのある資源配分を行うことが最善の方法だと考えました。 戦略改善のコツは? 限られた時間の中で、常に優先順位を意識して作業を行っています。実際には捨てる選択をすることが多いと感じますが、その順位の付け方については、今ひとつ経験則に頼っている部分も否めません。日々の作業は何とか回っているものの、未来に向けた戦略を立てる際には、判断基準をより明確にする必要があると実感しました。今後は、各要素を数値化し、ROI(投資効果)をしっかりと分析することで、より合理的な判断ができるよう努めたいと思います。

データ・アナリティクス入門

データ分析で結果を出すための工夫

データ分析の目的を明確に データ分析を行う際には、以下の点を重視する必要があります。 まず、分析の目的を明確にすることが重要です。分析の本質は比較にあり、適切な比較対象を選ぶことが求められます。そのためには、どのような項目をどのように分析するかという仮説を立て、それに基づいてデータを集め、分析することが必要です。そして、目に見えないデータや事象も考慮しながら、見せ方(例えばグラフなど)にも注意を払います。 マーケティング成果発表の準備は? 分析をする際の初めのステップは、「誰に」「何を」伝えるためにこの分析を行うのかを明確に意識することです。特に、次の期のマーケティング部門の成果発表で伝えるメッセージを考えるには、この意識が不可欠です。 来期施策に活かす分析のポイント 次に、来期の施策の布石となるメッセージを考えます。そのためには、まずどういうメッセージが良いかを考え、会社の方向性を確認します。その方向性とメッセージがつながっているかを検証した上で、どんな項目をどのように分析するのが適切かという仮説を立てます。実際にデータを集めて集計し、仮説の正しさを検証します。 このプロセスを通じて、有効と感じた施策や取り組みを数値的な裏付けをもとに発表し、来期の施策に活かしていくことが重要です。

データ・アナリティクス入門

数字を超える、比較の妙技

比較と目的はどう考える? 分析において、「比較」と「目的への立ち返り」の大切さを改めて感じました。何かしらの数値をグラフ化して報告するだけでは、かえって分析した気分になってしまい、実際は単なる数字の結果報告に過ぎなかったと認識しています。今後は、目の前の数字だけではなく、適切な比較対象を設定し、分析結果としてしっかり報告できるよう努めたいと考えています。 上司の反応はなぜ? 直近の業務では、状況報告を上司に行った際、好意的な反応を得られず、簡単に取得できる情報だけに依存し、見栄えの良いグラフや表を作成するだけの報告になっていたことを痛感しました。単に数値を並べるだけでなく、それぞれの情報をきちんと比較し、その内容から次の対応や施策を検討できるような報告に改善する必要性を感じています。 次の一手はどうする? そのため、今後の取り組みとして以下の点を意識していきます。 まず、分析の目的を再度明確にすること。 次に、比較する項目や内容について、上司の意見や生成AIのサポートを活用しながら見直しを行うこと。 さらに、定量的な分析だけでなく、定性的な分析も取り入れられるよう検討を進めること。 そして、最終的には目的に沿った次の対応策が検討できるような報告をまとめることを目標とします。

クリティカルシンキング入門

数字で紐解く学びの新発見

数字をどう見極める? 数字を分解することで、状況が明確に把握できると感じました。ただ単に数値を捉えるのではなく、Who、When、Howの視点から多角的に分析することで、異なる切り口が見えてくるのが良いと実感しています。 グラフで何が見える? また、分析を繰り返すことによって、数字からより状況が浮かび上がり、グラフ化することで視覚的に把握できる点も大変有益です。複数の切り口を整理する際には、MECEの原則を意識し、漏れなくダブりなく分解することが重要であると感じました。全体像をまず掴むことが、次の具体的な分析への基盤となります。 リスク対策はどう進む? リスクヘッジやレビューの際は、Who、When、How、そしてMECEの視点を用い、さまざまな角度から対策を講じることが求められると考えています。これらの手法を実践することで、意見や議論の幅が広がり、より充実した対応ができると感じています。 新たな視点は見えて? 新しいものを生み出す際には、単なる要求仕様に依存するのではなく、あらゆる視点から物事を分解し、対策を講じることが大切だと痛感しました。これまでとは異なる視点での切り口を発見するために、視野を広く保ちながら俯瞰的に物事を見ていくことを心がけたいと思います。

「分析 × 数値」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right