クリティカルシンキング入門

振り返りで変わる私の未来

文章はどう伝える? 相手に伝わる文章や資料作成においては、ただ情報を羅列するのではなく、読み手がすぐに理解できるよう、整理された構造と流れを意識することが大切だと学びました。単なる数字や文字の羅列ではなく、必要な情報が一目でわかるように、無駄な言葉を省きつつ具体的な内容を盛り込むことが求められます。 図表はどう活かす? 資料作成では、グラフや図表を効果的に用いるため、まずは単体の数値やデータに適切な単位の記載を行い、その後、データの性質に応じたグラフ(時系列データならば棒グラフ、変化を示す場合は折れ線グラフ、要素ごとのデータなら横グラフ)を利用して全体を俯瞰できるように工夫します。また、フォントや色、アイコン、強調表現の使い分けにより、伝えたいポイントと図表の整合性を持たせることも重要です。 メールはどう構成? メール文章については、結論を最初に示すとともに、題名や書き出しに相手の興味を引く工夫を施し、リード文から注意を引く構成にすることが大切です。文章全体も項目分けや箇条書きを取り入れ、情報を整理して分かりやすく伝えるよう努めています。 学びをどう確認? これまで学んだ数字の分析や日本語表現の技法、資料作成のポイントを振り返り、デスクトップにまとめた内容を常に確認しながら業務に取り組むことが、効果的な資料作成への近道であると感じています。完成した資料は、まるで「もう1人の自分」がチェックしているかのように、全体の整合性や論理性を見渡して仕上げることを心掛けています。

データ・アナリティクス入門

平均だけじゃ語れないデータの魅力

平均値だけじゃない? データを可視化する際、平均値を中心に考えがちですが、加重平均や幾何平均といった別の手法も存在し、目的に応じて使い分けが必要だと改めて感じました。また、平均値は外れ値の影響を受けやすいため、標準偏差での比較やグラフを用いて全体のばらつきにも注目することが重要であると学びました。 ヒストグラムの理由は? 年齢分布のグラフについては、ヒストグラムを選択しましたが、その理由が十分に明確にできていなかったと感じています。なぜヒストグラムが最適なグラフであるのか、今後は選択した理由を具体的に説明できるようにしていきたいと思います。 指標の選択は? 過去データとの比較を行う際、単純平均や割合のみに頼るのではなく、数値の規模やばらつきも考慮して加重平均や幾何平均、さらには中央値など、複数の指標を取り入れる必要があると再認識しました。 仮説思考はどう? また、データ分析のプロセスにおいて、これまであまり意識していなかった作業の流れを見直し、今回学んだ「仮説思考のプロセス」を参考に、目的を明確にし仮説を立てながら作業を進めていくことが大切であると感じました。 資料のまとめ方は? さらに、分析データを資料にまとめる際には、記載している数値(代表値)がどのようなものなのか、またどのようにグラフ化しているのかを明確にすることが求められると考えています。業種によっても適切な可視化方法が異なるため、差し支えない範囲でその違いを把握し、説明できるよう努めたいと思います。

データ・アナリティクス入門

数字が語る学びの物語

データ全体像は? データ比較や数値化、数字に集約して捉える方法、さらには視覚的および数式を通じて関連性を把握する手法について学び、大変参考になりました。これにより、データの全体像を把握しやすくなると感じています。 平均の違いは? 目的に応じて、単純平均だけでなく、加重平均、幾何平均、そしてはずれ値に対応する中央値など、さまざまな平均値の使い分けが有用であると再認識しました。数字を分析する際、データの中心値と散らばりを考えるアプローチは非常に重要です。 標準偏差はどう? 特に、これまであまり意識してこなかったデータのばらつき、すなわち標準偏差の理解については、自己学習が必要だと思いました。今回の学習を通して、データ分析においてばらつきの考慮が結果に与える影響の大きさに気付きました。 実践はどう進む? 今後は、学んだ知識を生かし、エクセルを活用してグラフ化するなど、実践的なアプローチに取り組んでいきます。また、どのデータを分析するかはまだ模索中ですが、さまざまな場面で応用できるよう、引き続き自己研鑽を積んでいく予定です。 難解概念の壁は? 一方で、「平方根」、「標準偏差」、および「正規分布と2SD」といった概念は難解に感じたため、これらの理解を深めるためにさらなる学習が必要だと感じました。また、過去に業務で使った経験がある「幾何平均」についても、当時はあまり考えずに対応していたため、Raw dataを見直しながら基礎から再確認していきたいと考えています。

データ・アナリティクス入門

振り返りで切り拓く未来

集客前提を疑ってみる? スクールの課題に対する対応優先順位を誤ってしまいましたが、そこには「また間違った集客を繰り返しそう」という隠れた前提がありました。まずは、この前提を改めることが必要であり、その上で真に解決すべき課題を特定する必要性を感じました。また、生徒データの切り口に関するブレストの中で、「ああそうだ、その観点も必要だ!」との意見があったことから、広い視野を持って落ち着いて検討する重要性を再認識しました。 数字の分析意図は? 分析したい項目がそもそも十分に取得できていない場合もあるため、あらかじめあきらめる部分もある一方で、見るべき数字の優先順位はしっかり決めて取り組む意向です。具体的には、イベントアンケート結果や申込者のデータについて、単に分析するのではなく「何が知りたいのか?その目的は何か?」と自分に問いながら進めるようにしています。 アンケート分析の意義は? 各イベント終了後には、アンケート結果と申込者属性の分析を行い、その内容を報告する必要があります。その際、以下の点を意識して業務にあたっています。まず①どの数値項目を優先的に見るのか、次に②その数値が他のイベントと比較して問題ないか、さらに③比較する際には条件を揃えているか、そして④関係者に報告する際には自分の仮説をセットで伝え、議論を促すかという点です。 特に②以降の実施が十分ではないと感じているため、限られた時間の中で箇条書きなどで条件を明確にし、意識しながら取り組むことを心がけています。

データ・アナリティクス入門

問題解決の視点で成長する方法

何が最優先? 問題解決の考え方では、まず最も重要な問題を特定することが大切です。「何が問題か?」という視点から始め、数値を比較して問題の所在にあたりをつけます。また、理想の計画と現状の未達成状況を把握し、そのギャップを埋める方法を検討します。数値の比較では、見る必要のない範囲を見極めて効率的に分析を進めることも重要です。 現状はどう捉える? 現状把握の際には、問題をさらに深掘りするための切り口を考え、その仮説や優先順位をつけていきます。この過程では定性的な情報も取り入れることが重要です。特に、数値に頼りがちな初期の分析では、仮説の形成において定性的な情報を活用することが印象的でした。 分解して見える? ロジックツリーの層別や変数の分解を用いて課題に取り組むと、目標達成のための具体的な施策が見えてきます。たとえば、採用施設数や売上の向上、コストカットといった課題に対処する際は、変数分解の考え方が役立ちます。また、メーカー推奨品の効果を確認する際には、計画と実績を数値で評価し、感覚的な良し悪しに頼らず客観的に判断することが求められます。 分析の工夫は? 分析を進める際には、「見なくてもよい範囲・数字・切り口」を適切に除外することで、効果的な分析が可能になります。データの切り口についても、何が効果的か考え、必要であれば追加のデータ取得を検討します。また、チームメンバーとアイデアを共有し、他に異なる切り口の可能性がないかを確認することも重要なプロセスです。

戦略思考入門

視野広げる!実践で磨く戦略術

戦略の真意は何? 戦略とは、効率よく目的を達成するために何を行い、何を控えるかを選択することですが、現状では日々の業務をただ繰り返すだけになっており、広い視野で全体を見据えた判断や、長期的な視点に基づいた判断ができていないと感じています。 講座のポイントは? 今回の戦略思考入門の講座では、ビジネスフレームワーク、基本戦略、事業経済性などについて学びました。単に各理論を知っているだけでは十分な戦略には結びつかないため、自分の業務に具体的な状況として適用できるよう、理論の考え方を深化させたいと思います。 売場戦略はどう? また、売場作りにおいては、POSデータに現れる数字だけでなく、その背景にある顧客の状況や自社の状態も重視し、自店舗の戦略に生かしていきたいと考えています。従来は、売れている商品=お客様に支持される商品という結論に至っていましたが、この方法では現状のニーズは把握できるものの、長期的には同じ手法に固執して停滞する恐れがあると同時に、会社全体の経済性も十分に考慮されていませんでした。 地域経営の今後は? 今後は、より広い視野で地域社会にとって必要とされる店舗運営や、会社全体の利益向上に寄与する戦略を構築していくことが重要だと認識しています。自店舗や地域の状況をフレームワークを用いて分析し、その結果を基に各行動に反映させることで、POSデータの数値も長期的な視点や地域のお客様、会社全体の利益につながるかという観点で再評価して取り組んでいきたいです。

クリティカルシンキング入門

数字の背後にある真実を解き明かす方法

数字の背後に何を見いだす? 数字を見る際には、単なる数値を追うのではなく、その背後にどのような事実を見いだしたいかを考え、仮説を立てて分析することが重要です。データを収集する際には、手元にある情報だけでは偏りが出る可能性を念頭に置き、多様な視点から情報を捉えることを心掛けるべきです。 データ分解の鍵は? データを分解する際には、「いつ」「誰が」「どのように」という観点を含め、網羅的に考えることが必要です。そして、本当にその推論が正しいのか、さらなる傾向を2、3考えてみることも重要です。分解して何も見つからなくても、それは失敗ではありません。切り口が不明確な場合は、まず分解を試み、それでわからなかったら特定の傾向がないことを確認することが意味を持ちます。 売上増減の要因は? 売上の増減を分析するときは、顧客や商品ごとに要因を探り、傾向を把握して未来の施策に活かします。過去の傾向に従うだけでなく、今あるデータを新たな視点から見直し、「本当にそうか?」と常に疑問を持ちながら進めることが求められます。 他組織の施策も見直してみますか? 自組織の施策と売上推移を振り返る際には、数値をグラフ化して新たな観点がないかを再考します。他組織の施策や売上推移についても、提示されている視点のみに依存せず、仮説をもって直接問いかけ、新たな傾向を探ります。うまくいっていない事例がある場合は、その要因をチームメンバーとともに分解の視点で考察し、どのように対処すべきかを話し合います。

データ・アナリティクス入門

代表値で解く!データ発見の旅

代表値の魅力とは? 今回の学習では、従来の平均値だけでなく、加重平均、幾何平均、中央値といった代表値の種類について新たな知見を得ることができました。それぞれの概念を学ぶことで、データ分析の基本的な考え方を再確認する良い機会となりました。 グラフ選定のポイントは? また、グラフの選び方についても、これまで感覚的に選んでいたグラフの代わりに、何を伝えたいのかという結論を明確にした上で選定する重要性を学びました。これにより、視覚的にデータを効果的に伝える方法を理解できるようになりました。 データ読み取りの工夫は? さらに、データの読み取りにおいても、これまで直感に頼って見ていた部分を見直し、特徴的な箇所に注目するという具体的な指標を取り入れる点が印象に残りました。より重点的に情報を把握する手法を学べたことは、今後の業務に大いに役立つと感じています。 Web分析の疑問点は? 業務面では、Web分析の中で代表値の使用機会が少なかったため、なぜ使用しないのか疑問が生じました。具体的には、1ユーザーあたりの平均ページビュー数や訪問時間帯の最頻値の取り扱いについて、今後の必要性を再考するきっかけとなりました。 数値羅列の問題点は? 最後に、CSVで抽出される数値の羅列では異常値に気づきにくいという実務上の課題も再認識しました。毎日管理しているデータを視覚化することで、より直感的に異常値や問題点を把握し、効果的な分析につなげたいと考えています。

クリティカルシンキング入門

数字で導く!分析の新たな視点

データ加工で全体像を把握するには? データを加工する際には、与えられた情報をそのまま受け取るのではなく、全体像を把握するために必要な項目を追加することが重要です。単に生の数値を羅列するのではなく、表として整理することで、様々な気づきを得ることができます。 グラフ化で得られる洞察とは? また、グラフ化する際には、数値をどのように区切るかが得られる解釈に大きな影響を与えます。どのように分ければ、より良い気づきを得られるかを意識しながら数字を整理することが求められます。グラフ化はあくまで手段であり、そこから得られる洞察を基に仮説を立て、実際の行動に結びつけて改善を図ることが目的です。 傾向が見つからないときの価値は? さらに、数字を分解してグラフ化した結果、傾向が見つからない場合もありますが、それは失敗ではありません。むしろ、傾向がないことが判明したこと自体に価値があります。 私はソフトウェアエンジニアなので、数字を分析する作業はあまり多くありません。しかし、例えばチームのミーティング時間を削減する際、いつ誰がどれだけの時間をミーティングに費やしているのかを分析するために、このような方法を活用できると考えました。 分析作業の目的をどう意識する? 分析作業に取り組む際、つい情報をまとめることが目的になりがちです。しかし、「何のための分析作業なのか?」、「仮説を得るためにはどのようにまとめるべきか?」といったことを常に考えながら、分析作業を進めたいと思います。

クリティカルシンキング入門

学びを深める「問いの立て方」の極意

問いを特定するには? 正しい問いを特定しなければ、解決策や答えは見つかりません。問いを立てる際には、その問いが正しいかどうかを考えることが重要です。 視覚的表現の工夫をどうする? 視覚的な見やすさも非常に重要です。例えば、数字の羅列では理解しづらい情報も、〇●などの視覚的な工夫をすることで見やすくなります。相手に伝わる表現や方法を常に意識することが求められます。 情報の分解で何が見える? 分解方法によって、見えてくる情報が変わります。例えば、表を分解する際には、その分解方法によって異なる視点から情報が見えてきます。勝率から導かれる上位層~下位層の分け方なども工夫が必要です。 なぜ反復トレーニングが大切? 反復トレーニングの重要性を感じました。学習した内容をすぐに身につけることは難しいため、常に意識して反復することが必要です。 業務分析で答えをどう導く? 業務数値やアンケート結果の分析、会議内容の設定においては、分析結果から答えを導き、それをゴールとして会議を進行させることが重要です。また、問を特定することで正しい答えを導けること、そしてその問いを共有することで異なる考えや切り口を受け入れることの重要性も感じました。 問いの深堀りで得られるものは? 問いを特定する際には、その問いが正しいか考え、自分の主張や考えを的確に言葉や文章にすることが重要です。深堀を行い、思いつきで話すのではなく、一呼吸おいて考える癖をつけることが大切です。

クリティカルシンキング入門

データ分析の意外な発見!新たな視点を持とう

数字分析で見落としはないか? 数字の分析を行う際には、単なる表面的な数字だけでなく、グラフ化することで視覚的に見やすくし、相手にも理解しやすくすることが重要です。さらに、グラフに1列追加することによって異なる結論を導き出すことができ、元のデータを再度検討することで、最初には見えなかった答えを見つけることも可能です。 事業計画に欠かせない視点とは? 分析においては、一つの傾向だけに満足せず、「本当にそうか」と自分に問いかける姿勢が大切です。特に事業計画を作成する際や収支計算、次年度予算に関しては、与えられた数字のみではなく、その背景をしっかりと分析して考えるように心がけたいと思います。また、プログラムに関連する学生や教員からのアンケートやフィードバックを受け取ったときも、それらをグラフ化して数値として表すだけでは不十分で、分類方法の再検討が必要です。 MECEをどう活用する? MECE(漏れなくダブりなく)を活用して、物事の意思決定において多角的に物事を分析することを心がけています。特に、MECEのプロセス分解を活用し、現在直面している意思決定を論理的に説明し、相手に納得してもらえるように取り組む予定です。 多様な視点で思考を深めるには? 自分の思考の傾向を理解し、常に多様な視点を意識した上で、一つの答えに満足しないように努めていきます。業務の中で特に事業計画の作成や収支計算の際には、これらの分析手法を積極的に活用していきたいと思います。

データ・アナリティクス入門

グラフと数値に学ぶ新視点

グラフ選定はどう決める? まず、グラフ選定の際の仮説の重要性を実感しました。これまで、複数のグラフを何となく並べ、どのグラフが伝えたい内容をより効果的に示すかという観点で選んでいました。しかし、自分が何を比較し何を見たいかを明確に設定した上でグラフを選ぶことの大切さに気付くことができました。 標準偏差、どう理解する? 次に、標準偏差への理解が深まりました。過去に数値として用いた経験はあったものの、どのような場面でどのように解釈すべきか、また算出方法や示す内容について十分に言語化や深堀りができていなかったと感じています。これを機に、もう少し詳しく学びたいと思います。 加重平均、どう捉える? また、ちょうどこの時期に話題となっている最低賃金改定を通して、「加重平均」という言葉の意味が理解できたのも印象的でした。普段から苦手な「割合」や「率」の変化については、今後データを取り扱う際により慎重に見極めていこうと思います。 平均と分散の見方は? さらに、平均値はこれまでピックアップすることが多かったのですが、数字のばらつきについては、存在を漠然と理解していたものの、どのように処理すればよいのか、そこからどんな示唆が得られるのかを考えてこなかったと実感しました。今後は、各種スコアや遷移率を分析する際、平均値だけでなく分散から見える傾向も踏まえ、案件や地域ごとの特性をより多角的に捉えられるよう、データの切り口や分析方法の幅を広げていきたいと思います。

「分析 × 数値」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right