戦略思考入門

可能性を活かすための戦略的思考

物事を捨てる選択は正しいか? 戦略的に物事を捨てることの重要性を再認識しました。業務において「捨てる」という選択は、可能性を手放すことと同義になる場合もあります。しかし、実践演習で経験したように、ROIなどの定量的指標を用いて優先順位をつけることが重要だと感じました。 顧客の優先順位をどう付ける? 実践演習で学んだ内容を活かして、顧客の優先順位付けを行い、どの顧客を優先的に訪問することで営業利益を最大化できるかを考えたいと思います。これまでは、過去の売上や顧客の規模で大まかに仕分けをしていましたが、今後は他の数値を参考にしながら、ROIを高めるために組織運営を進めていきたいと考えています。 データ分析で得られるものは? 数値分析を進めるにあたり、社内でどのようなデータが利用可能か、またどのように計算できるかを一次情報に基づいて分析したいと思います。さらに、現在行っている業務やサービスを洗い出し、無駄や不要なものが残っていないかをゼロベースで再検討していきたいと考えています。

アカウンティング入門

数字の裏側で見える経営の真実

利益と価値の関係は? コストを正しく理解することは、顧客に提供する価値を見極める上で重要です。利益獲得の状況は、利益額と利益率の両面から評価すべきです。たとえば、あるカフェビジネスのケースでは、ミノルとアキコがともに営業利益3%を実現していたものの、実際の金額には大きな差が見られました。 利益管理の難しさは? また、担当するポジションによっては、最終利益に至るまでの利益管理が求められる場合があります。しかし、外部からの評価はあくまで最終利益を基準として行われるため、この点を意識する必要があります。 競合分析のポイントは? 次に、競合他社の分析も重要です。まずは全体の動向を把握し、費用対売上高の効率性を中心に検証します。その際、マーケットシェアとの関連性にも注目することが望まれます。 損益比較のコツは? さらに、競合他社の損益計算書(P/L)を確認し、決算短信に記載されているビジネス概要のコメントを参考にしながら、自社のP/Lと比較してみることが効果的です。

アカウンティング入門

実務に活かす損益計算の分解術

損益計算書は理解できる? 言葉だけで損益計算書を理解しているつもりでも、実際に仕組みを分解して説明できるほどの理解には至っていないことに気づきました。具体的には、売上高や経常利益については概ね把握していたものの、その中間に位置する営業利益から当期純利益までの損益の流れが頭の中で明確にイメージできていませんでした。 自社財源はどう考える? また、自社の財源の賄い方について、少なくとも5つの段階に分解して考えなければ、全体の傾向を正しく捉えることはできないと実感しました。 医療機関の収益は? 実務においても、医療機関の財務分析を進めている中で、今回の学びを活かす機会がありました。早速、WEEK02で学習した内容をもとに、P/Lの各要素を分解し「この医療機関はどの部分で収益を生み出しているのか」という仮説を立ててみるつもりです。 分解手順を吟味する? さらに、その分解手順をフォーマット化して、様々なケースに当てはめながら傾向の違いを検証していく予定です。

データ・アナリティクス入門

データ分析の新たな視点を学んで気づいたこと

新たに学んだ加重平均とは? 加重平均を新たに学びました。外れ値がある場合に平均値で表せないことは感覚的には理解していましたが、加重平均を用いて計算したことはありませんでした。また、成長率についても単純に年数分の成長を年数で割るものではないと知っていましたが、直感的にすぐに計算できる方法を知りませんでした。このため、幾何平均も新たに学びました。 学んだ方法の活用を考える 現在の業務では、前年比を用いており、今回学んだ方法を使用する場面はほとんどないと考えています(会社的に求められていない)。しかし、個人的な興味や研究として、各種費用の値上げ率を幾何平均で算出し、物価上昇率との相関を見てみたいと思います。 個人的な興味とデータ分析 会社としてのアウトプットは求められていませんが、個人的な興味として、学んだ手法を各種データに当てはめて試してみるつもりです。これにより、これらのデータ分析が本当に不要なのか、それとも必要なのに見落としているのかを検証してみたいと思います。

データ・アナリティクス入門

数字が紡ぐ多角的な気づき

計算方法はどう違う? 他者による分析データでは幾何平均や標準偏差に触れる機会はありましたが、以前は計算式に苦手意識を感じていました。今回、単純平均や加重平均と併せて用いることで、データのばらつきや分布が視覚的に理解しやすいことを実感しました。また、分析結果同士の比較において要素が細分化され、読み解く幅が広がることも理解できました。普段目にするデータの背後には巧妙な仕組みが潜んでいることを再確認し、背景にある意図をより慎重に読み取ろうという意識が芽生えました。 部署ごとの傾向は? 担当しているダイバーシティ推進の取り組みでは、アンケート結果が全社的にポジティブな回答に偏る傾向が見受けられました。しかしながら、ネガティブな回答は特定の部署に偏っている可能性もあります。回答者の部署や性別などの属性に注目することで、異なる視点からの分析が可能になると感じました。こうした多角的な検証を通じ、部署ごとの業務特性やジェンダーバイアスなどの要因が明らかになることが期待されます。

データ・アナリティクス入門

データと仮説で切り拓く未来

原因は何でしょう? 問題を解決するためには、原因をプロセスごとに分解して明らかにする方法が効果的だと実感しました。広告にかかる費用と表示回数だけで費用対効果を計算しても、課題解決には至りません。しかし、クリック数や申し込み数といったデータを加えて各割合を算出することで、具体的な解決策のヒントを得ることができました。 A/Bテストはどう? また、業務では主に定量分析や可視化を中心に行っているため、これまで触れる機会の少なかったwebマーケティングで活用されるA/Bテストについて学べたことは非常に新鮮でした。 仮説、どう作る? さらに、日々の業務でデータ分析や問題解決を行う際、どうしても過去の経験や周囲の意見に基づくストーリーに頼ってしまい、データ活用が十分にできていなかったことに気付きました。今後は、「What」「Where」「Why」「How」の各ステップや様々なフレームワークを活用した仮説の立案を取り入れ、より効果的な解決策を模索していきたいと思います。

データ・アナリティクス入門

数字が語る学びの秘話

代表値の使い方は? 代表値の計算方法として、単純平均、加重平均、幾何平均、中央値のアプローチがあることを再確認しました。日常の業務では状況に応じて使い分けているものの、特に幾何平均は実際に計算する経験がなく、大変勉強になりました。また、データのばらつきを捉えるための標準偏差を使った比較も初めて試み、今後の分析に役立てたいと感じました。 分析結果はどう活かす? 研修成績やサーベイ結果の推移やばらつきを把握し、傾向や特徴を見出すために、今回学んだ代表値の計算方法やビジュアライゼーションが非常に有効だと考えます。まずは、データを確認する前に、点数が上昇している場合と下降している場合の仮説を立て、その上で属性ごとに単純平均を用いて比較を行います。さらに、人事制度などとの関連付けを行う際には、特定の部署の比重を増やす加重平均や、前々回分のデータを反映した幾何平均を導入することで、目的に合った多角的なアプローチを実現し、仮説の検証や次の分析ステップへとつなげていきます。

データ・アナリティクス入門

データ分析の新視点を見つけた瞬間

データ分析の重要性再確認 ライブ授業で教わった「データ分析は比較である」ということや、目的に沿った分析が重要だという点は、今までの経験から理解していたつもりでした。しかし、動画で出てきた愛の値段の計算や補強すべき部分の選択などの設問に答えることができなかったため、自分にはまだできていないことが多いと気づかされました。 比較視点をどう持つか? プロジェクトや業績の実績評価の際に、他の競合や他の例と比較して報告することができたら良いと思いました。「Apple to Apple」の比較対象を探すことは簡単ではありませんが、比較がないよりは評価や分析が深まるはずですので、挑戦したいと考えています。 比較癖をつけるための方法 結果や業績などの数字を見た際に、必ず他と比較する視点を身に付けることが重要です。何と比較して良かったのか、標準はどのくらいなのかを自分で確認するようにし、その比較対象があることでどのような見え方になるのかを考える癖を付けたいと思います。

アカウンティング入門

財務分析で見出す成長戦略の鍵

PLのポイントを押さえるには? PL(損益計算書)の仕組みを理解し、各利益間に注目することで、どの部分に費用がかかっているのかを把握できることがわかりました。粗利を上げるためには、提供する価値を明確にし、それに見合う価格設定が重要であることを理解しました。 財務諸表で何が見える? 自社と競合他社の財務諸表を確認し、どこに費用がかかっているのか、自社と競合との違いを分析するために活用したいと考えています。さらに、異なる業界の会社の財務諸表を通じて、業界ごとの差異を理解することも目指しています。 IR情報で業界特徴を学ぶには? 自社および競合他社のIR情報を確認し、利益構造にどのような違いがあるのかを把握したいと思っています。また、異業種の会社のIR情報も調査し、業界特有の違いについて学んでいきたいです。そのうえで、自社の課題が見つかった場合、なぜそのような状態になっているのか、そしてどのように改善すれば良いのかを考えていきたいと考えています。

データ・アナリティクス入門

幾何平均で拓く新視点の統計術

平均と標準偏差の意味は? これまで平均値と標準偏差をなんとなく使用していましたが、今回の学びを通じて、それぞれの利用目的や強みが明確になりました。特に、幾何平均については、これまで計算式が難しいという理由からあまり触れてこなかったものの、その特徴を理解できたことで、必要に応じて積極的に活用していきたいと感じています。また、標準偏差についても、グラフで見るイメージだけでなく、具体的な数値として求められることを知り、大変驚きました。 業務に活かす意図は? 業務では、マーケティング部門として販売実績の分析や経営層への成長率報告のデータ分析に役立てることができると実感しています。具体的には、各社の売上高を中央値や標準偏差で分析したり、販売実績の成長率に対して幾何平均を用いるなど、状況に応じた情報提示ができるように活用していきたいと考えています。 幾何平均の応用点は? また、幾何平均が適用できる場面について、さらに意見交換を行いたいと思います。

アカウンティング入門

BSとPLで企業分析!深まる学びの旅

ライブで何を学んだ? ライブセッションでは具体的な企業の分析を行い、実在する企業を題材にすることでイメージがしやすかったです。そこで、BS(貸借対照表)とPL(損益計算書)の観点から分析する方法を学びました。この手法をさまざまな業界や知識に応用することで、さらに学習を深められると感じました。 未知企業の分析、どうする? 企業をBSとPLの観点で分析する際、その企業の活動を具体的にイメージすることが重要であると思いました。特に自分が詳しくない分野の企業については、まずその分野の知識を増やすことで理解が深まると考えています。 継続学習の秘訣は? また、継続的な学習や自分の業界に対する理解が深まることで、BSとPLを読み解く際の理解度や深さが変わることを実感しました。これを考慮に入れて、会計の知識だけでなく、個人的に興味のある分野についても学習し続けたいと思います。今回の経験を機に、さらに会計の知識を深める努力を続ける意欲が高まりました。

クリティカルシンキング入門

数字が織りなす学びの発見

データ加工でどんな発見? 一つのデータでも、加工を行うことで新たな情報が浮かび上がることに驚かされました。例えば、比率を計算したりグラフ化することで、単なる数字だけでは見えなかった側面を発見することができました。このような手法は、社員の意識調査の分析にも応用できそうで、回答結果をグラフ化したり、各設問ごとに回答数に基づいて順位付けを行うことで、従来の数字だけでは把握しづらい新たな視点を引き出せると感じています。 仮説の偏りはどう防ぐ? また、データを分解する際には、仮説を立てることで具体的な傾向が明確になりやすい一方、固定概念にとらわれるリスクもあると実感しました。そのため、年代・性別・職種・居住地など、さまざまな角度からの分析を試みることで、全体像を見失わずに対応策を考えることが可能になると考えています。しかし、仮説に偏ってしまうと全体像が見えなくなる場合が多いため、他にも思考の偏りを防ぐ方法があれば、ぜひ教えていただきたいと思います。

「分析 × 計算」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right