データ・アナリティクス入門

代表値の落とし穴と細部の魅力

代表値の意外な落とし穴は? 代表値の有用性と、その落とし穴について理解が深まりました。データを活用する目的に応じ、代表値の背後にある背景を把握するためには、必要な手間を惜しまない姿勢が大切であると再認識しました。 毎月の数字はどう? また、毎月の売上や費用といった数字は、ひとまとめにすると他月と大きく変わらないように見えても、実際には中身が大きく異なることが多いです。このため、詳細な項目の変動にも着目し、単なる異常の有無だけでなく、次月以降への影響などを踏まえて、より深い検証に努める必要があると感じています。 内訳の分析は必要? さらに、月次決算の報告前の分析においては、全体の数字(代表値)だけでなく、必ず内訳の変動を比較することが重要です。単月の変動に留まるのか、次月以降も影響が及ぶ傾向があるのか、または対策が必要な内容なのかを、各要素ごとに分けて分析するよう心がけたいと思います。

クリティカルシンキング入門

問いから生まれる新たな学び

正しい問いは何? 「問い」を誤ると、その後の努力が無駄になる可能性があると感じました。そこで、常に「問い」から始め、本当に正しい問いであるかを考えることの重要性を学びました。また、そのプロセスを共有し、確認し続けることも大切だと認識しています。 会議で問いは必要? IT業界においても、そもそもの「問い」が誤っていたり、思い込みにより不要な作業が生じている場合があります。したがって、会議や議論の場で「問い」を意識的に共有することで、無駄を省き生産性を向上させられるのではないかと考えています。 導く問いは何? 今後も常に「問い」から出発し、その正しさを確認・共有する姿勢を業務に取り入れていきたいと思います。また、クリティカルシンキング研修で学んだ自分の思考の偏りに気づいた経験を踏まえ、学んだ手法や考え方を活用しながら論理的な分析やグラフ作成など、客観的な判断ができるよう努めたいと考えています。

データ・アナリティクス入門

MECEで広がる分析の新境地

MECEの理解を深めるには? MECEの考え方は非常にわかりやすく、理解することができました。これまで要因解析に活用していたロジックツリーを、別の目的の分析にも使えると知り、非常に驚きました。また、売上を単価と数量に分けて分析する方法も、実践しやすく感じました。 数字の分解で深掘り分析 要因分析では、数字を分解して深掘りすることが広く応用できると考えています。MECEをフレームワークとして理解したので、実際に分析する際には層別が漏れなく、重複がないかを図示して見える化し、確認していきます。 精度向上を目指す次のステップ 定性的な要因分析も含めて、まずはロジックツリーを実際に描いてみることから始めます。その上で、MECEの観点で層別が適切にできているかを図を用いて確認し、分析の精度を向上させたいです。また、これらの図を使って関係者と共有し、レビューすることで、より精度アップを目指します。

データ・アナリティクス入門

実践と洞察で未来を拓く

実践学習の効果は? 学習内容を実践的に活用しようとする姿勢が素晴らしく、データ分析においてもその洞察力が十分に発揮できると感じました。今後は、可能性や必要なデータをより具体的に整理していくことで、さらに充実した学びに繋がると思います。 市場環境の見直しは? また、現状の市場状況や競合環境を鑑み、製品サイクルを考慮した上で複数の課題を明確にすることが重要だと感じました。優先順位を明確にし、実現可能な対策を現場と共に検討・実行していく中で、どのようなチェックポイントが必要になるのかも考えていきたいと思います。 部内議論の方向性は? さらに、まずは部内で現在考えている課題を洗い出し、複数の案を出し合う場を設けると良いと感じました。その上で、今後の進め方についてマーケティングや営業の各方面とも相談しながら、各自の役割分担を実施して課題解決に向けた取り組みを進めていくことが望ましいと考えます。

アカウンティング入門

財務諸表で未来を切り拓くコツ

数字はどう伝える? 財務諸表は企業の成績表として、融資や出資の判断に欠かせないものです。「売上や利益がやや上がっている」といった曖昧な表現ではなく、「前年度比で売上は120%、利益は110%になっている」といった具体的な数値で説明できるようになりたいと考えています。 状況は本当によく見えてる? 顧客企業の決算書を活用して現状分析を行い、顧客企業の経営状況に寄り添った人事制度を構築していきたいです。ただし、漠然と経営状況を理解したつもりになるのではなく、講座で学んだ内容をもとに根拠のある判断ができるようになりたいと考えています。 学びはどう深まる? これに向けて、毎週ナノ単科の講座をコツコツと受講し、知識を蓄えています。11月2日までには、製造業と情報通信業の決算書を精査し、製造業全体や個社の特徴を自分なりに考察する予定です。特に、労働分配率や営業利益率に注目して学びを深めていきます。

クリティカルシンキング入門

問題解決力で未来を創る!

どんな問いを立てる? 問題を明確に把握するためには、「問いは何か?」を起点にすることが重要です。問いを残し、それを意識し続け、組織全体で共有して方向性を統一することの重要性を学びました。また、データ分析では、データを加工し、数字を視覚化することで効果を高めることができると感じました。 論理枠組みはどう? 来年に向けた社内イベントや研修の企画書を作成する際には、今回学んだMECEやピラミッドストラクチャーを活用して、どこに問題があるかを特定し、論理的な枠組みを構築したいと考えています。これにより、主張を適切な根拠で支えられるようにしたいです。 根拠共有は十分? 来年度の社内イベント、特に新入社員プログラムの計画案を立てる際には、今年の結果を振り返りながら、アンケート結果を基に問題を特定し、プロジェクトチーム内でその情報を共有してしっかりと根拠づけを行っていくことを目指しています。

アカウンティング入門

PLで読み解く!取引先の経営戦略

PLの仕組みで利益はどう見える? PLの仕組みを通じて、会社がどの程度利益を上げているのか、何にお金が使われているのかを理解することができました。また、顧客に対してどのような価値を提供するのか、そのコンセプトをしっかり定めることで、経営方針がぶれることなく進められることを理解できました。 取引先の経営状況をどう分析する? 現状の仕事において、取引先の経営状況を把握し、分析する作業でこれを活用したいと思います。その分析業務を通じて、その会社がPL上でどのような意思を持って活動しているのか、提供する価値が何なのかを把握できるようになりたいです。 取引先のPL分析を始めるには? まずは、取引先のPLを分析することから始めたいと思います。その上で、客先を訪問し、彼らが提供しようとしている価値をどのように考えているのかを確認し、自分の理解と客先の意図をきちんと繋げていくことを目指します。

戦略思考入門

学びから戦略への第一歩

フレームワークは何? 3C、SWOT、バリューチェーンなどのフレームワークを学ぶ中で、外部・内部分析の基礎を理解することができました。具体例も交えられており、とても分かりやすかったです。今後は、さらに多くのフレームワークの知識も広げていきたいと考えています。 業務改善のヒントは? 一方、学んだフレームワークをすぐに自分の業務に適用してみたものの、分析の粒度が粗く、経営の成功に直結する具体的な施策を打ち出すのは難しいと感じました。専門家同士が集まり、内部・外部の分析を行うことで、より高度な施策の立案が可能になるのではないかと思います。 戦略再考はどう? 今後は、フレームワークの基礎を踏まえた上で、自社の経営戦略の資料を再度確認し、戦略検討のプロセスや考え方を自分なりに学び直していきたいと考えています。まとまった時間が確保できる長期休暇などを活用し、じっくりと身に付けていくつもりです。

データ・アナリティクス入門

不安から自信へ変わる実践法

比較と伝え方は? データ分析においては、常に比較する姿勢を忘れず、大切なポイントだと実感しています。また、ビジュアル化する際には、これまで自身が慣れ親しんできたグラフだけでなく、伝えたい情報に最も適した表現方法を選ぶことを意識しています。 経験はどう活かす? 業務での分析経験があるため、実際の活用イメージは湧きやすいです。これまでは自己流で学んでいたため、考え方や手法に不安を感じることもありましたが、体系的に学ぶことで自信を持って活用できるようになりました。 仮説と検証は? 具体的には、まず仮説を立て、その後、比較対象を検討してバイアスを排除しつつデータを見るよう努めています。また、分析結果に関しては、担当者間でできる限り議論を重ね、さまざまな視点から検証することを心がけています。さらに、ビジュアル化の際は、誰が見ても正しく、わかりやすく伝えることを意識しています。

クリティカルシンキング入門

データ分析で未来を変える!

学びの意義は? 私の学びについてお伝えします。 数値の発見は何故? 数値データの詳細な分析は重要だと感じました。データの分類手法により異なる結果が得られることを理解しました。また、全体を定義し、仮説を立てることの必要性も痛感しました。具体的には、フレームワークとしてMECEを利用することです。 医療解析の視点は? 医療技術関連に関しては、まず数値化可能なデータを取得し、求めたい結果を明確にしてデータ全体を定義しました。その後、仮説を立て、MECEを活用して分析を進めました。関連性がありそうな分野として、曜日別の忙しさや業務分析にこの手法が使えそうなので試す予定です。 未来の計画はどう? 来週には、自分に関連する業務について計画を立て、その後、今回学んだ手法を活用して曜日別・年齢別の業務分析を行います。その分析結果を振り返り、上司や他の受講生とも共有したいと思っています。

データ・アナリティクス入門

数値に隠れた学びの秘訣

単純平均で十分? まず、単純な平均値の算出だけでは誤解を招く結果になる可能性があると感じました。標準偏差を用いた分析、加重平均の導入、さらには外れ値を除外して計算するなど、数値として意味のある手法を用いる必要があるという考えに至りました。 NPS集計はどう変わる? また、問い合わせ対応後に実施しているNPSの集計についても、状況に応じた評価が重要だと考えます。障害発生時のNPSスコアと、通常の問い合わせ時のスコアが大きく異なるため、障害などの背景情報を考慮に入れて集計した方が適切であると思いました。 状況別スコアの信頼性? さらに、NPSの回答スコアは状況によって変動するため、その状況に関する詳細な情報を併せて提示し、分析の軸として活用することが望ましいと感じています。どのような状況でどの集計方法が最適かを試行錯誤しながら、知識とスキルを磨いていきたいという思いが伝わりました。

データ・アナリティクス入門

フレームワークで開く学びの扉

仮説はどう生まれる? まずは、3Cや4Pといったフレームワークを仮説の軸として活用することで、仮説をスムーズに構築できます。この方法により、偏った仮説や考慮漏れを防ぎ、網羅的かつ精度の高い分析が行えると感じています。 私の仮説偏りはなぜ? また、私自身、問題解決のための仮説設定が思いつきやすいものに偏りがちであることを実感しています。そこで、今後はまず3Cや4Pなどの軸に基づいて仮説を網羅的に洗い出す手順に見直すことにしました。これにより、より体系的かつ客観的なアプローチが可能になり、問題解決の効率も向上すると考えています。 実践はどう進む? 具体的には、最初に3Cや4Pを活用して課題に対する多角的な視点を整理し、次に各軸に沿って仮説をリストアップ、優先順位を付けながら検証を進めます。最後に、検証結果をフィードバックし、再度仮説を見直していくプロセスを実践していく予定です。

「分析 × 活用」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right