データ・アナリティクス入門

目的を見据える分析の一歩

どんな学び方がある? 今週は、正直何をすればよいのか、どう学び、どのようにグループワークを進めればよいのかが分からず、新しいインプットがほとんど得られなかったため、少し物足りなさを感じました。もっと手を動かして分析に挑戦してみたかったという思いがあります。 目的を見いだすコツは? 目的を明確にして分析を始めることが大切です。一つのデータや事象に固執せず、視点を変えて全体を俯瞰しながら取り組む姿勢が求められます。常に目的を意識し、仮説検証が難しいときは生成AIの力も上手に活用していくことが重要だと感じました。 目的をどう守る? また、仮説思考でクリティカルに考える習慣を身につけるため、業務に取り組む際には常に目的を意識する必要があります。部下が目的を見失わないよう、状況確認を行うことも意識して取り組んでいかなければなりません。 広報の立ち位置は? 現在の広報業務においては、この仕事がマーケティングファネルのどの位置にあたるかを常に考えながら進めていくことが求められると強く感じています。

データ・アナリティクス入門

データ分析と仮説思考で売上UPを目指す

3Cと4Pをどう活用する? 複数の仮説と網羅的な思考を持つことを学ぶことができました。また、市場、競合、自社(3C)、製品、価格、場所、プロモーション(4P)を意識した仮説構築の重要性も理解しました。データの収集方法については、本当に対象者からのデータなのか、アンケートなのか、口頭なのか、数値なのか、きちんと比較するための収集といった意識も重要だと感じました。 売上向上のための分析法は? 現在、売上が思うように伸びず、分析検証フェーズに入っています。そこで今回学んだ仮説の立て方やデータの取り方を意識しながら、数値を見ていきたいと思います。また、前回のグラフの最適化も考慮に入れつつ、精度の高い分析・検証を行いたいです。 新たな施策提案に必要な視点 さらに、昨年10月から今年6月までの流入数や購入数、広告費などの数値をしっかりと活用し、相関や因果関係を見つけ出し、仮説思考を組み合わせて新しい施策や提案を行いたいと考えています。様々な仮説を一つずつ検証し、網羅的な分析も合わせて行いたいと思います。

戦略思考入門

顧客視点で差別化!戦略的アプローチ

なぜ顧客目線が大事? 差別化を考える際には、まず顧客の視点が重要であることを学びました。簡単な施策では競合他社も同様のことを実行している可能性があるため、競合の動向をリサーチすることも必要です。差別化を実現するために、3C分析やVRIO分析などのフレームワークを活用し、実現可能かつ持続可能な方策を考えていきたいと思います。 ターゲットは誰? まず、ターゲットを明確にすることが重要です。施策の対象となる顧客が誰なのかをはっきりとさせます。そして、競合他社のリサーチを行い、彼らの特色や優位性を理解することが必要です。 報告はどうまとめる? これらの情報を基に、フレームワークを用いて実現可能な施策を考えていきたいと思います。まずは業界全体の特色を整理し、その中で自社の特色や優位性を理解し、まとめていきます。広い視野で業界を先読みし、市場分析を行うことで他社との差別化を図り、経営会議で報告できるようにしたいです。報告資料には十分なエビデンスを含め、経営層が納得できる内容にしたいと考えています。

データ・アナリティクス入門

データ分析で役立つ具体的アプローチ

分析の流れをどう把握する? 分析とは、目的、仮説、問い、そしてデータ収集・加工を行うという流れをきちんと把握することが重要だと感じました。また、インパクト、ギャップ、トレンド、ばらつきなどの各因子を鑑みたうえで数値を見ていくことが必要であると理解しました。 代表値の注意点とは? 何かとすぐに飛びつきがちな代表値の中でも、特に単純平均値には注意が必要です。業務では、サイト流入数や売上など様々な数値を見る機会が多いため、一つの代表値だけでなく、多様な代表値を目的をもって算出したり、散らばりを意識した分析を行いたいと感じました。 データ収集のポイントは? 日次、週次、月次など期間を定めた上で、数値の意味を考えたデータ収集や分析を行うことが重要です。過去のデータを活用しながら自分なりの仮説を立て、今回学んだフロー(目的→仮説・問い→データ収集→検証)を実施していきたいです。また、インパクト(重み)、ギャップ(差異)、ばらつき(分布)といった視点を意識しながら、数値の意味を考えていきたいと思います。

クリティカルシンキング入門

未来を拓く振り返りの力

分析の目的は? 分析を進める際は、単に計算のしやすさで切り分けるのではなく、何のために分析するのかという目的意識が大切だと学びました。そのため、まずは仮説を立て、複数の切り口から考えることが求められます。結論が出たと感じても、再度丁寧に見直すプロセスが重要です。 視覚化の効果は? また、分析した結果を有効に活用するためには、視覚化が不可欠です。データをグラフや図表で表現することで、「目に仕事をさせる」効果が高まり、情報がより伝わりやすくなります。 行動予測はどう? 具体的には、お客さまの行動予測の場合、過去の実績データをもとに、締結チャネルの変化などを切り口にして分析します。月ごとの傾向を把握し、そこに変化が現れていないか、また今後どう推移するのかを考えることが大切です。 評価の均衡は? さらに、メンバーやスタッフのパフォーマンス評価においては、従来は品質と効率を個別に評価していました。しかし、両者をバランス良く満たす適正値を見つけることが、より正確な評価につながると考えています。

データ・アナリティクス入門

新しい方法論で業績アップを狙う!

分析の重要性とは? 今週の学習で重視したポイントは、分析は比較であるということです。また、「Apple to Apple」を意識し、適切な比較要素を抽出することも重要です。過去の方法が最善だったのか、新たな方法論があるのか、今後の講義を通じてさらに学びを得たいと考えています。 業績分析をどう活用するか? 私は、自部署の業績分析や戦略策定にこの学びを活用しようと考えています。新規案件の獲得状況や既存案件のプロジェクト収支など、必要な情報を精査し、分析を進めたいと思っています。この分析を基に、新規提案活動、適切なリソースの配置、社員教育など、部門運営の戦略立案に役立てることを目指しています。 情報収集の方法は? はじめに、営業部からのパイプライン情報の共有、リソース計画、メンバーの稼働率、プロジェクトステータス、メンバーのスキルマップなど、各方面からの情報収集を徹底することが必要です。これらの情報を活用し、現状の組織における問題点を把握し、効果的な戦略策定につながるよう努めたいと考えています。

データ・アナリティクス入門

エビデンスが示す戦略の新境地

A/Bテストとは? A/Bテストは、データ分析における「比較」の重要性を実感させる手法です。ランダムにサンプルを抽出することで、一定数の調査データから精度の高い結果が得られる点や、どの工程でボトルネックが発生しているか割合を算出できる点に実践的な可能性を感じました。 戦略の判断基準は? 勤務先のイメージ戦略について、2つの側面のうちどちらを強調すべきかは感覚的には把握しているものの、エビデンスが不足しているため不安な面もあります。A/Bテストを活用すれば、どちらがより効果的か明確に判断できるのではという期待から、早速ターゲティングサービスを提供する業者に同様のサービスがあるか確認する予定です。ただし、単純にAかBのどちらかだけではなく、両方を組み合わせた戦略が効果を高める可能性もあると考え、慎重な実施が必要だと感じています。そこでまずは広告代理店に相談し、業界の広報戦略が十分に実践されていない現状を踏まえた実証実験として、自社と共同で取り組める可能性を探るため、休み明けに連絡するつもりです。

クリティカルシンキング入門

多角的視点で浮かび上がるデータの真実

グラフ化の効果は? データの見せ方としてグラフ化を活用することで、一覧表では捉えにくかった増減や変化が一目で把握できる点に大変感銘を受けました。試行錯誤を通じて、どの角度からデータを分けるとより具体的な傾向が見えてくるのか、その方法論を実感することができました。 切り口は十分? また、データを分解して考察する際には、最初の切り口だけでは十分な特徴が浮かび上がらない場合もあることを学びました。そのため、別の視点を追加してさらに分解することで、要因をより明確に特定できるようになると感じています。常に「それって本当に?」と疑いながら丁寧に詳細を追求していく姿勢が、根拠を深める鍵だと実感しました。 多角視点は有効? さらに、分析する際には、顧客の属性、購買動機、来店経路など複数の切り口を用いることで、現場での具体的な戦略やアクションに結びつけるための理論的枠組みが形成されると感じています。一つの視点に固執せず、多角的にデータを分解する試みは、今後の実践においても大いに参考になると実感しています。

データ・アナリティクス入門

データで広がる学びの可能性

仮説はどう広がる? フレームワークの視点を活用することで、仮説の幅を広げることができます。既存のデータを活用する方法と、新たにアンケートなどでデータを収集する方法の二つがあります。まずは自社や公表されているデータから問題を絞り込み、次に知りたいことを軸に必要なデータを集める流れが重要です。 急変時に何を検証? あるデータが急に増減した場合、時間をかける前にまず仮説を立て、その仮説を裏付けるためにどのデータが必要かを検討しながら分析を開始することが求められます。ひとつのデータに固執せず、同時期の他のデータも合わせて確認することで、多角的な視点が得られるでしょう。 データ整理はどう進む? 業界では多くの公表データが存在しますが、それぞれのデータに何が含まれているのかを把握できていないケースがしばしばあります。まずは各データの整理を行い、その上で社内に共有し、他部署とも同じ視点で把握するよう努めます。直感や経験に頼るだけでなく、データで検証するという姿勢を社内に広めていくことが大切です。

クリティカルシンキング入門

分解で発見!学びのチャレンジ

分解の意義は? 「分けていく」ことは、理解を深めるための重要な手段です。たとえば、数字を活用する際には、まず全体を定義し、目的に沿った切り口で分解することが求められます。このプロセスは、結果がすぐに見えてこなくても、どこに傾向があるかを把握する手助けとなります。 迷いはどう克服? 分解する作業に迷いが生じた場合も、早急に結論へたどり着くために、思い切って分解を実施してみることが大切です。時間をかけて検討するより、まずは行動してみることで、意外な発見に繋がることもあります。 課題の本質は? 顧客実績のデータ分析においては、これまで曖昧な課題から無理やり示唆を引き出してしまうことがありました。そのため、問題提起の初めに目的を明確にし、「問題箇所」の特定、「原因究明」、そして「解決策」の各ステップを順序立てて検討する姿勢が必要です。 相談で解決する? また、業務に関しては、同僚や部下との相談を積極的に行い、情報の整理や意見交換を通じて、より良い解決策につなげることが望まれます。

アカウンティング入門

数字が描く未来へのヒント

PLの理解を深めるには? 単にPL(損益計算書)の構造―売上、費用、利益―を理解するだけでなく、どのようにして売上や利益を向上させ、どのような費用を投入すべきか。そして、そのためのコアバリューが何であるかを考えることで、PLの理解がより深まると感じました。 採算会議で確認するのは? まず、毎月の採算会議では、自部門のPLを各サービスごとに細かく分析し、それぞれのサービスがもつコアバリューを理解することが重要です。これにより、良い点と改善すべき点を明確にし、今後の運営に活用していきたいと思います。 強みも見直すべきか? また、自社の強みと弱みを再度見直し、現状何が足りないのかを明らかにしたうえで、社内メンバーと共に次のステップを検討することも必要だと考えています。 結果から学ぶポイントは? さらに、毎月末や四半期末、半期ごとに結果を振り返る際、数字を構成する各要素についても説明することで、良かった点や課題が明確になり、その上で次に繋がる具体的な施策の立案が可能になると感じました。

データ・アナリティクス入門

「what」から「why」へ。思考再発見

なぜ「why」から考える? 自分は、どうしても思考のプロセスで「why」から入ってしまう癖があることに気づきました。たとえば、なぜ入会したのかという疑問が、いつも最初に浮かんでしまいます。 いつからwhyを深掘り? しかし、いきなり「why」に注目して分析を進めると、アンケート回答などの定性的な情報に頼ることになってしまいます。そこで、適切なタイミングで「why」を深掘りするための前提として、まずは「what」や「where」といった要素を整理できるようにしたいと考えています。 どうして結果は変わる? たとえば、売上目標に対する進捗状況が良い場合や悪い場合において、どうしてそのような結果になったのかを分析し、次の施策を立てる場面では、最初に「なぜ」から入り込むのではなく、まず「what」や「where」を明確にしてから「why」にアプローチすることが重要です。具体的には、ロジックツリーを活用して事業を構造的に分解し、問題の起因部分を明確にする方法を取り入れることが有効だと考えています。

「分析 × 活用」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right